A224508 a(n+2) = a(n+1) + a(n) + A*t^n, with A = 1 and t = -2.
0, 1, 2, 1, 7, 0, 23, -9, 78, -59, 275, -296, 1003, -1341, 3758, -5775, 14367, -24176, 55727, -99521, 218350, -405459, 861467, -1641144, 3414627, -6615125, 13576718, -26592839, 54092743, -106717824, 215810375, -427778361, 861773838, -1713488171, 3443252963
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. N. Phadte and S. P. Pethe, On second order non homogeneous recurrence relation, Annales Mathematicae et Infomaticae, 41 (2013), 205-210.
- Index entries for linear recurrences with constant coefficients, signature (-1,3,2).
Crossrefs
Cf. A227200.
Programs
-
Mathematica
nn = 40; A = 1; t = -2; CoefficientList[Series[(x + x^2 (A - t))/((1 - x*t) (1 - x - x^2)), {x, 0, nn}], x] (* T. D. Noe, Sep 21 2013 *) (* or *) LinearRecurrence[{-1,3,2}, {0,1,2}, 35] (* Georg Fischer, Jan 26 2022 *)
Formula
G.f.: (x+x^2*(A-t))/((1-x*t)*(1-x-x^2)).
Comments