cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Chandrakant N Phadte

Chandrakant N Phadte's wiki page.

Chandrakant N Phadte has authored 2 sequences.

A227200 a(n) = a(n-1) + a(n-2) - 2^(n-1) with a(0)=a(2)=0, a(1)=-a(3)=1, a(4)=-5.

Original entry on oeis.org

0, 1, 0, -1, -5, -14, -35, -81, -180, -389, -825, -1726, -3575, -7349, -15020, -30561, -61965, -125294, -252795, -509161, -1024100, -2057549, -4130225, -8284926, -16609455, -33282989, -66669660, -133507081, -267285605, -535010414, -1070731475
Offset: 0

Author

Chandrakant N Phadte, Sep 18 2013

Keywords

Crossrefs

Cf. versions with different signs: A027974, A142585.

Programs

  • BASIC
    LET N=0
    LET L=0
    LET M=1
    PRINT L
    PRINT M
    FOR I=1 TO 30
    LET N=M+L-(2)^(I-1)
    PRINT N
    LET L=M
    LET M=N
    NEXT I
    END
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1-3*x)/((1-2*x)*(1-x-x^2)))); // Bruno Berselli, Oct 03 2013
    
  • Magma
    I:=[0,1,0,-1,-5]; [n le 5 select I[n] else Self(n-1)+Self(n-2)-2^(n-3): n in [1..35]]; // Vincenzo Librandi, Oct 05 2013
  • Mathematica
    Table[LucasL[n + 1] - 2^n, {n, 0, 30}] (* Bruno Berselli, Oct 03 2013 *)
    CoefficientList[Series[x (1 - 3 x)/((1 - 2 x) (1 - x - x^2)), {x, 0, 40}], x](* Vincenzo Librandi, Oct 05 2013 *)
  • PARI
    a(n)=fibonacci(n)+fibonacci(n+2)-2^n \\ Charles R Greathouse IV, Oct 03 2013
    

Formula

G.f.: x*(1-3*x)/((1-2*x)*(1-x-x^2)).
a(n) = -(-1)^n*A142585(n+1) = A000032(n+1) - 2^n. [Bruno Berselli, Oct 03 2013]
a(n) = 3*a(n-1) -a(n-2) -2*a(n-3). [Bruno Berselli, Oct 03 2013]

Extensions

More terms from Bruno Berselli, Oct 03 2013

A224508 a(n+2) = a(n+1) + a(n) + A*t^n, with A = 1 and t = -2.

Original entry on oeis.org

0, 1, 2, 1, 7, 0, 23, -9, 78, -59, 275, -296, 1003, -1341, 3758, -5775, 14367, -24176, 55727, -99521, 218350, -405459, 861467, -1641144, 3414627, -6615125, 13576718, -26592839, 54092743, -106717824, 215810375, -427778361, 861773838, -1713488171, 3443252963
Offset: 0

Keywords

Comments

With these particular values, a(n) turns out to be Fibonacci(n) + (-2)^n.

Crossrefs

Cf. A227200.

Programs

  • Mathematica
    nn = 40; A = 1; t = -2; CoefficientList[Series[(x + x^2 (A - t))/((1 - x*t) (1 - x - x^2)), {x, 0, nn}], x] (* T. D. Noe, Sep 21 2013 *) (* or *)
    LinearRecurrence[{-1,3,2}, {0,1,2}, 35] (* Georg Fischer, Jan 26 2022 *)

Formula

G.f.: (x+x^2*(A-t))/((1-x*t)*(1-x-x^2)).