cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027971 T(n, 2n-9), T given by A027960.

Original entry on oeis.org

3, 7, 18, 47, 123, 319, 806, 1954, 4506, 9859, 20495, 40615, 77040, 140455, 247085, 420906, 696509, 1122751, 1767344, 2722551, 4112177, 6100063, 8900312, 12789498, 18121132, 25342683, 35015477, 47837823, 64671742
Offset: 5

Views

Author

Keywords

Crossrefs

A column of triangle A027011.

Programs

  • GAP
    a:=[3,7,18,47, 123,319,806,1954,4506,9859];; for n in [11..40] do a[n]:=10*a[n-1]-45*a[n-2]+120*a[n-3]-210*a[n-4]+252*a[n-5]-210*a[n-6] +120*a[n-7] -45*a[n-8]+10*a[n-9]-a[n-10]; od; a; # G. C. Greubel, Sep 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^5*(3 -2*x)*(1-7*x+23*x^2-44*x^3+55*x^4-44*x^5+23*x^6-7*x^7+x^8)/(1-x)^10 )); // G. C. Greubel, Sep 26 2019
    
  • Maple
    seq(coeff(series(x^5*(3-2*x)*(1 -7*x +23*x^2 -44*x^3 +55*x^4 -44*x^5 +23*x^6 -7*x^7 +x^8)/(1-x)^10, x, n+1), x, n), n = 5..40); # G. C. Greubel, Sep 26 2019
  • Mathematica
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1}, {3,7,18,47, 123,319,806,1954,4506,9859},40] (* Harvey P. Dale, Aug 04 2017 *)
  • PARI
    Vec(-x^5*(2*x-3)*(x^8-7*x^7+23*x^6-44*x^5+55*x^4-44*x^3+23*x^2 -7*x+1)/(x-1)^10 + O(x^40)) \\ Colin Barker, Nov 25 2014
    
  • Sage
    def A027971_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^5*(3-2*x)*(1-7*x+23*x^2-44*x^3+55*x^4-44*x^5+23*x^6-7*x^7 +x^8)/(1-x)^10 ).list()
    a=A027971_list(40); a[5:] # G. C. Greubel, Sep 26 2019
    

Formula

a(n) = (17055360 -16329024*n +7697736*n^2 -2299060*n^3 +462798*n^4 -60207*n^5 +4284*n^6 -30*n^7 -18*n^8 +n^9)/362880. - Colin Barker, Nov 25 2014
G.f.: x^5*(3-2*x)*(1 -7*x +23*x^2 -44*x^3 +55*x^4 -44*x^5 +23*x^6 -7*x^7 +x^8)/(1-x)^10. - Colin Barker, Nov 25 2014