A027971 T(n, 2n-9), T given by A027960.
3, 7, 18, 47, 123, 319, 806, 1954, 4506, 9859, 20495, 40615, 77040, 140455, 247085, 420906, 696509, 1122751, 1767344, 2722551, 4112177, 6100063, 8900312, 12789498, 18121132, 25342683, 35015477, 47837823, 64671742
Offset: 5
Links
- Colin Barker, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
A column of triangle A027011.
Programs
-
GAP
a:=[3,7,18,47, 123,319,806,1954,4506,9859];; for n in [11..40] do a[n]:=10*a[n-1]-45*a[n-2]+120*a[n-3]-210*a[n-4]+252*a[n-5]-210*a[n-6] +120*a[n-7] -45*a[n-8]+10*a[n-9]-a[n-10]; od; a; # G. C. Greubel, Sep 26 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^5*(3 -2*x)*(1-7*x+23*x^2-44*x^3+55*x^4-44*x^5+23*x^6-7*x^7+x^8)/(1-x)^10 )); // G. C. Greubel, Sep 26 2019 -
Maple
seq(coeff(series(x^5*(3-2*x)*(1 -7*x +23*x^2 -44*x^3 +55*x^4 -44*x^5 +23*x^6 -7*x^7 +x^8)/(1-x)^10, x, n+1), x, n), n = 5..40); # G. C. Greubel, Sep 26 2019
-
Mathematica
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1}, {3,7,18,47, 123,319,806,1954,4506,9859},40] (* Harvey P. Dale, Aug 04 2017 *)
-
PARI
Vec(-x^5*(2*x-3)*(x^8-7*x^7+23*x^6-44*x^5+55*x^4-44*x^3+23*x^2 -7*x+1)/(x-1)^10 + O(x^40)) \\ Colin Barker, Nov 25 2014
-
Sage
def A027971_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^5*(3-2*x)*(1-7*x+23*x^2-44*x^3+55*x^4-44*x^5+23*x^6-7*x^7 +x^8)/(1-x)^10 ).list() a=A027971_list(40); a[5:] # G. C. Greubel, Sep 26 2019
Formula
a(n) = (17055360 -16329024*n +7697736*n^2 -2299060*n^3 +462798*n^4 -60207*n^5 +4284*n^6 -30*n^7 -18*n^8 +n^9)/362880. - Colin Barker, Nov 25 2014
G.f.: x^5*(3-2*x)*(1 -7*x +23*x^2 -44*x^3 +55*x^4 -44*x^5 +23*x^6 -7*x^7 +x^8)/(1-x)^10. - Colin Barker, Nov 25 2014