cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027975 a(n) is the n-th diagonal sum of left justified array T given by A027960.

Original entry on oeis.org

1, 1, 4, 5, 8, 12, 16, 23, 31, 42, 57, 76, 102, 136, 181, 241, 320, 425, 564, 748, 992, 1315, 1743, 2310, 3061, 4056, 5374, 7120, 9433, 12497, 16556, 21933, 29056, 38492, 50992, 67551, 89487, 118546, 157041, 208036, 275590, 365080, 483629, 640673, 848712, 1124305, 1489388, 1973020
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027960.

Programs

  • GAP
    a:=[1,1,4,5];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]-a[n-4]; od; a; # G. C. Greubel, Sep 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+2*x^2)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Sep 26 2019
    
  • Maple
    seq(coeff(series((1+2*x^2)/((1-x)*(1-x^2-x^3)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Sep 26 2019
  • Mathematica
    CoefficientList[Series[(1+2*x^2)/((1-x)*(1-x^2-x^3)), {x,0,40}], x] (* or *) LinearRecurrence[{1,1,0,-1}, {1,1,4,5}, 41] (* G. C. Greubel, Sep 26 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+2*x^2)/((1-x)*(1-x^2-x^3))) \\ G. C. Greubel, Sep 26 2019
    
  • Sage
    def A027975_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+2*x^2)/((1-x)*(1-x^2-x^3)) ).list()
    A027975_list(40) # G. C. Greubel, Sep 26 2019
    

Formula

G.f.: (1 + 2*x^2)/((1-x)*(1-x^2-x^3)).
a(n) = a(n-2) + a(n-3) + 3. - Greg Dresden, May 18 2020

Extensions

Terms a(32) onward added by G. C. Greubel, Sep 26 2019