A027975 a(n) is the n-th diagonal sum of left justified array T given by A027960.
1, 1, 4, 5, 8, 12, 16, 23, 31, 42, 57, 76, 102, 136, 181, 241, 320, 425, 564, 748, 992, 1315, 1743, 2310, 3061, 4056, 5374, 7120, 9433, 12497, 16556, 21933, 29056, 38492, 50992, 67551, 89487, 118546, 157041, 208036, 275590, 365080, 483629, 640673, 848712, 1124305, 1489388, 1973020
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1).
Crossrefs
Cf. A027960.
Programs
-
GAP
a:=[1,1,4,5];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]-a[n-4]; od; a; # G. C. Greubel, Sep 26 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+2*x^2)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Sep 26 2019 -
Maple
seq(coeff(series((1+2*x^2)/((1-x)*(1-x^2-x^3)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Sep 26 2019
-
Mathematica
CoefficientList[Series[(1+2*x^2)/((1-x)*(1-x^2-x^3)), {x,0,40}], x] (* or *) LinearRecurrence[{1,1,0,-1}, {1,1,4,5}, 41] (* G. C. Greubel, Sep 26 2019 *)
-
PARI
my(x='x+O('x^40)); Vec((1+2*x^2)/((1-x)*(1-x^2-x^3))) \\ G. C. Greubel, Sep 26 2019
-
Sage
def A027975_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+2*x^2)/((1-x)*(1-x^2-x^3)) ).list() A027975_list(40) # G. C. Greubel, Sep 26 2019
Formula
G.f.: (1 + 2*x^2)/((1-x)*(1-x^2-x^3)).
a(n) = a(n-2) + a(n-3) + 3. - Greg Dresden, May 18 2020
Extensions
Terms a(32) onward added by G. C. Greubel, Sep 26 2019