A027982 a(n) = Sum_{k=0..2*n} (k+1)*T(n, 2*n-k), T given by A027960.
1, 10, 38, 108, 270, 632, 1426, 3148, 6854, 14784, 31674, 67508, 143278, 303016, 638882, 1343388, 2817942, 5898128, 12320650, 25689988, 53477246, 111148920, 230686578, 478150508, 989855590, 2046820192, 4227858266, 8724152148, 17985175374, 37044092744
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Crossrefs
Cf. A027960.
Programs
-
Magma
A027982:= func< n | (2*n+11)*2^n -2*(3*n+5) >; // G. C. Greubel, Jun 07 2025
-
Mathematica
LinearRecurrence[{6,-13,12,-4},{1,10,38,108},40] (* Harvey P. Dale, Oct 28 2020 *)
-
PARI
Vec((1+4*x-9*x^2-2*x^3)/((1-x)^2*(1-2*x)^2) + O(x^100)) \\ Colin Barker, Nov 25 2014
-
Python
def A027982(n): return (2*n+11)*2**n -2*(3*n+5) # G. C. Greubel, Jun 07 2025
Formula
From Colin Barker, Nov 25 2014: (Start)
a(n) = (-10 + 11*2^n + 2*(-3 + 2^n)*n).
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: (1 + 4*x - 9*x^2 - 2*x^3) / ((1-x)^2*(1-2*x)^2). (End)
E.g.f.: (11 + 4*x)*exp(2*x) - 2*(5 + 3*x)*exp(x). - G. C. Greubel, Jun 07 2025
Extensions
More terms from Colin Barker, Nov 25 2014