cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027982 a(n) = Sum_{k=0..2*n} (k+1)*T(n, 2*n-k), T given by A027960.

Original entry on oeis.org

1, 10, 38, 108, 270, 632, 1426, 3148, 6854, 14784, 31674, 67508, 143278, 303016, 638882, 1343388, 2817942, 5898128, 12320650, 25689988, 53477246, 111148920, 230686578, 478150508, 989855590, 2046820192, 4227858266, 8724152148, 17985175374, 37044092744
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027960.

Programs

  • Magma
    A027982:= func< n | (2*n+11)*2^n -2*(3*n+5) >; // G. C. Greubel, Jun 07 2025
    
  • Mathematica
    LinearRecurrence[{6,-13,12,-4},{1,10,38,108},40] (* Harvey P. Dale, Oct 28 2020 *)
  • PARI
    Vec((1+4*x-9*x^2-2*x^3)/((1-x)^2*(1-2*x)^2) + O(x^100)) \\ Colin Barker, Nov 25 2014
    
  • Python
    def A027982(n): return (2*n+11)*2**n -2*(3*n+5) # G. C. Greubel, Jun 07 2025

Formula

From Colin Barker, Nov 25 2014: (Start)
a(n) = (-10 + 11*2^n + 2*(-3 + 2^n)*n).
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
G.f.: (1 + 4*x - 9*x^2 - 2*x^3) / ((1-x)^2*(1-2*x)^2). (End)
E.g.f.: (11 + 4*x)*exp(2*x) - 2*(5 + 3*x)*exp(x). - G. C. Greubel, Jun 07 2025

Extensions

More terms from Colin Barker, Nov 25 2014