A027984 a(n) = Sum_{k=0..n} T(n, k)*T(n, n+k), T given by A027960.
1, 6, 20, 58, 161, 436, 1165, 3088, 8146, 21426, 56255, 147538, 386681, 1013026, 2653240, 6948058, 18193141, 47634936, 124717445, 326526748, 854877926, 2238131506, 5859556195, 15340601158, 40162350961, 105146619486, 275277778940
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-2,1).
Programs
-
Magma
A027984:= func< n | (5*Fibonacci(2*n+2) +Lucas(2*n+1) -Lucas(n+3))/2 >; [A027984(n): n in [0..40]]; // G. C. Greubel, Jun 10 2025
-
Mathematica
LinearRecurrence[{4,-3,-2,1}, {1,6,20,58}, 41] (* G. C. Greubel, Jun 10 2025 *)
-
PARI
T027960(r,n) = if(r<0||n>2*r, return(0)); if(n==0||n==2*r, return(1)); if(n==1, 3, T027960(r-1, n-1)+T027960(r-1, n-2)); a(n) = sum(k=0, n, T027960(n, k)*T027960(n, n+k)); \\ Michel Marcus, Feb 25 2015
-
SageMath
L = lucas_number2 def A027984(n): return (5*fibonacci(2*n+2) +L(2*n+1,1,-1) -L(n+3,1,-1))//2 print([A027984(n) for n in range(41)]) # G. C. Greubel, Jun 10 2025
Formula
Conjectures from Colin Barker, Feb 25 2015: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4).
G.f.: (1-x)*(1+x)*(1+2*x) / ((1-3*x+x^2)*(1-x-x^2)). (End)