cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027984 a(n) = Sum_{k=0..n} T(n, k)*T(n, n+k), T given by A027960.

Original entry on oeis.org

1, 6, 20, 58, 161, 436, 1165, 3088, 8146, 21426, 56255, 147538, 386681, 1013026, 2653240, 6948058, 18193141, 47634936, 124717445, 326526748, 854877926, 2238131506, 5859556195, 15340601158, 40162350961, 105146619486, 275277778940
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027984:= func< n | (5*Fibonacci(2*n+2) +Lucas(2*n+1) -Lucas(n+3))/2 >;
    [A027984(n): n in [0..40]]; // G. C. Greubel, Jun 10 2025
    
  • Mathematica
    LinearRecurrence[{4,-3,-2,1}, {1,6,20,58}, 41] (* G. C. Greubel, Jun 10 2025 *)
  • PARI
    T027960(r,n) = if(r<0||n>2*r, return(0)); if(n==0||n==2*r, return(1)); if(n==1, 3, T027960(r-1, n-1)+T027960(r-1, n-2));
    a(n) = sum(k=0, n, T027960(n, k)*T027960(n, n+k)); \\ Michel Marcus, Feb 25 2015
    
  • SageMath
    L = lucas_number2
    def A027984(n): return (5*fibonacci(2*n+2) +L(2*n+1,1,-1) -L(n+3,1,-1))//2
    print([A027984(n) for n in range(41)]) # G. C. Greubel, Jun 10 2025

Formula

Conjectures from Colin Barker, Feb 25 2015: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4).
G.f.: (1-x)*(1+x)*(1+2*x) / ((1-3*x+x^2)*(1-x-x^2)). (End)
a(n) = (1/2)*(5*A000045(2*n+2) + A000032(2*n+1) - A000032(n+3)). - G. C. Greubel, Jun 10 2025