cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027999 Expansion of Product(1+q^m)^(m(m-1)/2); m=1..inf.

Original entry on oeis.org

1, 0, 1, 3, 6, 13, 24, 49, 91, 181, 334, 632, 1163, 2138, 3880, 7006, 12531, 22279, 39369, 69078, 120597, 209282, 361405, 620829, 1061687, 1807014, 3062642, 5168784, 8688820, 14549659, 24274226, 40353748, 66854518, 110391391, 181695436, 298129605, 487706902
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(binomial(i, 2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[Binomial[i, 2], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)

Formula

a(n) ~ 7^(1/8) / (2^(47/24) * 15^(1/8) * n^(5/8)) * exp(-2025 * Zeta(3)^3 / (98*Pi^8) - 135*(15/7)^(1/4) * Zeta(3)^2 / (28*Pi^5) * n^(1/4) - 3*sqrt(15/7) * Zeta(3) / (2*Pi^2) * sqrt(n) + 2*(7/15)^(1/4) * Pi/3 * n^(3/4)), where Zeta(3) = A002117. - Vaclav Kotesovec, May 27 2015