A028229 Call m Egyptian if we can partition m = x_1+x_2+...+x_k into positive integers x_i such that Sum_{i=1..k} 1/x_i = 1; sequence gives all non-Egyptian numbers.
2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 19, 21, 23
Offset: 1
Examples
1=1/3+1/3+1/3, so 3+3+3=9 is Egyptian.
References
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 147.
- See also R. K. Guy, Unsolved Problems Number Theory, Sect. D11.
Links
- R. L. Graham, A theorem on partitions, J. Austral. Math. Soc. 3:4 (1963), pp. 435-441. doi:10.1017/S1446788700039045
- Eric Weisstein's World of Mathematics, Egyptian Number.
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
egyptianQ[n_] := Select[ IntegerPartitions[n], Total[1/#] == 1 &, 1] =!= {}; A028229 = Reap[ Do[ If[ !egyptianQ[n], Sow[n]], {n, 1, 40}]][[2, 1]] (* Jean-François Alcover, Feb 23 2012 *)
Comments