cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028245 a(n) = 5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1 (essentially Stirling numbers of second kind).

Original entry on oeis.org

0, 0, 0, 0, 24, 360, 3360, 25200, 166824, 1020600, 5921520, 33105600, 180204024, 961800840, 5058406080, 26308573200, 135666039624, 694994293080, 3542142833040, 17980946172000, 90990301641624
Offset: 1

Views

Author

N. J. A. Sloane, Doug McKenzie mckfam4(AT)aol.com

Keywords

Comments

For n>=2, a(n) is equal to the number of functions f: {1,2,...,n-1}->{1,2,3,4,5} such that Im(f) contains 4 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Mar 08 2007

Crossrefs

Programs

  • Magma
    [5^(n-1) - 4*4^(n-1) + 6*3^(n-1) - 4*2^(n-1) + 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
  • Mathematica
    24StirlingS2[Range[30],5] (* Harvey P. Dale, Jun 18 2013 *)
    Table[5^(n - 1) - 4*4^(n - 1) + 6*3^(n - 1) - 4*2^(n - 1) + 1, {n, 21}] (* or *)
    Rest@ CoefficientList[Series[-24 x^5/((x - 1) (4 x - 1) (3 x - 1) (2 x - 1) (5 x - 1)), {x, 0, 21}], x] (* Michael De Vlieger, Sep 24 2016 *)
  • PARI
    for(n=1,30, print1(24*stirling(n,5,2), ", ")) \\ G. C. Greubel, Nov 19 2017
    

Formula

a(n) = 24*S(n, 5) = 24*A000481(n). - Emeric Deutsch, May 02 2004
G.f.: -24*x^5/((x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by R. J. Mathar, Sep 16 2009
E.g.f.: (Sum_{k=0..5} (-1)^(5-k)*binomial(5,k)*exp(k*x))/5. with a(0) = 0. - Wolfdieter Lang, May 03 2017