A028259 Engel expansion of the golden ratio, (1 + sqrt(5))/2 = 1.61803... .
1, 2, 5, 6, 13, 16, 16, 38, 48, 58, 104, 177, 263, 332, 389, 4102, 4575, 5081, 9962, 18316, 86613, 233239, 342534, 964372, 1452850, 7037119, 7339713, 8270361, 12855437, 15900982, 19211148, 1365302354, 1565752087, 1731612283
Offset: 1
References
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..2406 (Terms 1 through 300 from T. D. Noe, 301 through 698 from Simon Plouffe, and 699 through 1500 from G. C. Greubel)
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sém. Théor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Eric Weisstein's World of Mathematics, Engel Expansion
- Eric Weisstein's World of Mathematics, Golden Ratio
- Index entries for sequences related to Engel expansions
Programs
-
Mathematica
EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]
-
Python
j = 0 while j<3100000: # to obtain n correct Engel expansion terms about n^2/2 continued fraction steps are needed; 3100000 is a safe bound if j == 0: p0, q0 = 1, 1 elif j == 1: p1, q1 = p0+1, 1 else: p0, p1 = p1, p1+p0 q0, q1 = q1, q1+q0 j = j+1 i = 0 while i < 2410: i = i+1 a = q0//p0+1 print(i, a) p0 = a*p0-q0 # A.H.M. Smeets, Aug 24 2018
Formula
Limit_{n -> oo} log(a(n + floor(golden ratio)))/n = 1.
Extensions
Corrected and extended by Vladeta Jovovic, Aug 16 2001
Comments