A028260 Numbers with an even number of prime divisors (counted with multiplicity); numbers k such that the Liouville function lambda(k) (A008836) is positive.
1, 4, 6, 9, 10, 14, 15, 16, 21, 22, 24, 25, 26, 33, 34, 35, 36, 38, 39, 40, 46, 49, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 69, 74, 77, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 100, 104, 106, 111, 115, 118, 119, 121, 122, 123, 126, 129, 132, 133, 134
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- S. Ramanujan, Irregular numbers, J. Indian Math. Soc., 5 (1913), 105-106; Coll. Papers 20-21.
Programs
-
Haskell
a028260 n = a028260_list !! (n-1) a028260_list = filter (even . a001222) [1..] -- Reinhard Zumkeller, Oct 05 2011
-
Maple
with(numtheory); A028260 := proc(n) option remember: local k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do if(bigomega(k) mod 2=0)then return k: fi: od: end: seq(A028260(n),n=1..63); # Nathaniel Johnston, May 27 2011
-
Mathematica
Select[Range[200],EvenQ[PrimeOmega[#]]&] (* Harvey P. Dale, Aug 14 2011 *) Select[Range@ 134, LiouvilleLambda@# > 0 &] (* Robert G. Wilson v, Jul 06 2012 *)
-
PARI
is(n)=bigomega(n)%2==0 \\ Charles R Greathouse IV, May 29 2013
-
Python
from math import isqrt, prod from sympy import primerange, primepi, integer_nthroot def A028260(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-1-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,m)) for m in range(2,x.bit_length()+1,2))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Apr 10 2025
Formula
A066829(a(n)) = 0. - Reinhard Zumkeller, Jun 26 2009
A001222(a(n)) mod 2 = 0. - Reinhard Zumkeller, Oct 05 2011
Sum_{n>=1} 1/a(n)^s = (zeta(s)^2 + zeta(2*s))/(2*zeta(s)). - Enrique Pérez Herrero, Jul 06 2012
Comments