cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028260 Numbers with an even number of prime divisors (counted with multiplicity); numbers k such that the Liouville function lambda(k) (A008836) is positive.

Original entry on oeis.org

1, 4, 6, 9, 10, 14, 15, 16, 21, 22, 24, 25, 26, 33, 34, 35, 36, 38, 39, 40, 46, 49, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 69, 74, 77, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 100, 104, 106, 111, 115, 118, 119, 121, 122, 123, 126, 129, 132, 133, 134
Offset: 1

Views

Author

Dan Asimov (dan(AT)research.att.com)

Keywords

Comments

If k appears, p*k does not (p primes). - Philippe Deléham, Jun 10 2006
The product of any two terms of this sequence, or any two terms of the complement of this sequence (A026424), is a term of this sequence. The product of a term of this sequence and a term of A026424 is a term of A026424. The primitive terms of this sequence are the semiprimes (A001358). - Franklin T. Adams-Watters, Nov 27 2006
A072978 is a subsequence. - Reinhard Zumkeller, Sep 20 2008
Quadratic residues of A191089(n) as n -> oo. - Travis Scott, Jan 14 2023

Crossrefs

Cf. A001222, A001358, A008836, A026424 (complement), A145784, A065043 (char. func).

Programs

  • Haskell
    a028260 n = a028260_list !! (n-1)
    a028260_list = filter (even . a001222) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Maple
    with(numtheory); A028260 := proc(n) option remember: local k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do if(bigomega(k) mod 2=0)then return k: fi: od: end: seq(A028260(n),n=1..63); # Nathaniel Johnston, May 27 2011
  • Mathematica
    Select[Range[200],EvenQ[PrimeOmega[#]]&] (* Harvey P. Dale, Aug 14 2011 *)
    Select[Range@ 134, LiouvilleLambda@# > 0 &] (* Robert G. Wilson v, Jul 06 2012 *)
  • PARI
    is(n)=bigomega(n)%2==0 \\ Charles R Greathouse IV, May 29 2013
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, primepi, integer_nthroot
    def A028260(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-1-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,m)) for m in range(2,x.bit_length()+1,2)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Apr 10 2025

Formula

A066829(a(n)) = 0. - Reinhard Zumkeller, Jun 26 2009
A001222(a(n)) mod 2 = 0. - Reinhard Zumkeller, Oct 05 2011
Sum_{n>=1} 1/a(n)^s = (zeta(s)^2 + zeta(2*s))/(2*zeta(s)). - Enrique Pérez Herrero, Jul 06 2012