A028288 Molien series for complex 4-dimensional Clifford group of order 92160 and genus 2. Also Molien series of ring of biweight enumerators of Type II self-dual binary codes.
1, 1, 1, 3, 4, 5, 8, 10, 12, 17, 21, 24, 31, 37, 42, 52, 60, 67, 80, 91, 101, 117, 131, 144, 164, 182, 198, 222, 244, 264, 293, 319, 343, 377, 408, 437, 476, 512, 546, 591, 633, 672, 723, 771, 816, 874, 928, 979, 1044, 1105, 1163, 1235, 1303, 1368
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
- W. Duke, On codes and Siegel modular forms, Int. Math. Res. Notes 1993, No. 5, Theorem 2.
- W. C. Huffman, The biweight enumerator of self-orthogonal binary codes, Discr. Math. Vol. 26 1979, pp. 129-143.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,1,-2,1,-2,2,0,1,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)) )); // G. C. Greubel, Feb 01 2020 -
Maple
seq(coeff(series((1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)), x, n+1), x, n), n = 0..60); # G. C. Greubel, Feb 01 2020
-
Mathematica
LinearRecurrence[{1,0,2,-2,1,-2,1,-2,2,0,1,-1}, {1,1,1,3,4,5,8,10,12,17,21,24}, 60] (* Jean-François Alcover, Jan 27 2015 *) CoefficientList[Series[(1+x^4)/((1-x)(1-x^3)^2(1-x^5)),{x,0,60}],x] (* Harvey P. Dale, Jul 10 2019 *)
-
PARI
Vec((1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)) + O('x^60)) \\ G. C. Greubel, Feb 01 2020
-
Sage
def A028288_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)) ).list() A028288_list(60) # G. C. Greubel, Feb 01 2020
Formula
G.f.: (1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)).
a(n) ~ 1/135*n^3. - Ralf Stephan, Apr 29 2014