cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028288 Molien series for complex 4-dimensional Clifford group of order 92160 and genus 2. Also Molien series of ring of biweight enumerators of Type II self-dual binary codes.

Original entry on oeis.org

1, 1, 1, 3, 4, 5, 8, 10, 12, 17, 21, 24, 31, 37, 42, 52, 60, 67, 80, 91, 101, 117, 131, 144, 164, 182, 198, 222, 244, 264, 293, 319, 343, 377, 408, 437, 476, 512, 546, 591, 633, 672, 723, 771, 816, 874, 928, 979, 1044, 1105, 1163, 1235, 1303, 1368
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)) )); // G. C. Greubel, Feb 01 2020
    
  • Maple
    seq(coeff(series((1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)), x, n+1), x, n), n = 0..60); # G. C. Greubel, Feb 01 2020
  • Mathematica
    LinearRecurrence[{1,0,2,-2,1,-2,1,-2,2,0,1,-1}, {1,1,1,3,4,5,8,10,12,17,21,24}, 60] (* Jean-François Alcover, Jan 27 2015 *)
    CoefficientList[Series[(1+x^4)/((1-x)(1-x^3)^2(1-x^5)),{x,0,60}],x] (* Harvey P. Dale, Jul 10 2019 *)
  • PARI
    Vec((1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)) + O('x^60)) \\ G. C. Greubel, Feb 01 2020
    
  • Sage
    def A028288_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)) ).list()
    A028288_list(60) # G. C. Greubel, Feb 01 2020

Formula

G.f.: (1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)).
a(n) ~ 1/135*n^3. - Ralf Stephan, Apr 29 2014