cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028346 Expansion of 1/((1-x)^4*(1-x^2)^2).

Original entry on oeis.org

1, 4, 12, 28, 58, 108, 188, 308, 483, 728, 1064, 1512, 2100, 2856, 3816, 5016, 6501, 8316, 10516, 13156, 16302, 20020, 24388, 29484, 35399, 42224, 50064, 59024, 69224, 80784, 93840, 108528, 125001, 143412, 163932, 186732, 212002, 239932, 270732, 304612, 341803
Offset: 0

Views

Author

Keywords

Comments

Equals triangle A152205 as an infinite lower triangular matrix * the triangular numbers: [1, 3, 6, ...]. - Gary W. Adamson, Feb 14 2010
a(n) is the number of partitions of n into four kinds of parts 1 and two kinds of parts 2. - Joerg Arndt, Mar 09 2016

Crossrefs

Cf. A152205, A001752 (for the similar series 1/((1-x)^4*(1-x^2))).

Programs

  • Magma
    [(n+4)*(2*n^4+32*n^3+172*n^2+352*n+15*(-1)^n+225)/960: n in [0..40]]; // Vincenzo Librandi, Feb 14 2016
  • Mathematica
    CoefficientList[Series[1/((1 - x)^4 (1 - x^2)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2016 *)
    LinearRecurrence[{4, -4, -4, 10, -4, -4, 4, -1}, {1, 4, 12, 28, 58, 108, 188, 308}, 100] (* G. C. Greubel, Nov 25 2016 *)
  • PARI
    Vec(1/((1-x)^4*(1-x^2)^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    

Formula

a(n) = (n+4)*(2*n^4 + 32*n^3 + 172*n^2 + 352*n + 15*(-1)^n + 225)/960. - R. J. Mathar, Apr 01 2010
From Antal Pinter, Jan 08 2016: (Start)
a(n) = C(n + 3, 3) + 2*C(n + 1, 3) + 3*C(n - 1, 3) + 4*C(n - 3, 3) + ...
a(n) = Sum_{i = 1..z} i*C(n + 5 - 2*i,3) where z = (2*n + 3 + (-1)^n)/4.
(End)
a(n) = Sum_{i = 0..n} A002624(i). - Antal Pinter, May 05 2016