A028375 Squares of (odd numbers not divisible by 5).
1, 9, 49, 81, 121, 169, 289, 361, 441, 529, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2209, 2401, 2601, 2809, 3249, 3481, 3721, 3969, 4489, 4761, 5041, 5329, 5929, 6241, 6561, 6889, 7569, 7921, 8281, 8649, 9409, 9801, 10201, 10609, 11449, 11881, 12321
Offset: 1
Links
- Rodolfo Ruiz-Huidobro, Table of n, a(n) for n = 1..250
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).
Programs
-
Mathematica
Select[Range[1, 191, 2], Mod[#, 5] != 0 &]^2 (* or *) LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {1, 9, 49, 81, 121, 169, 289, 361, 441}, 50] (* Harvey P. Dale, Feb 26 2017 *) Complement[2Range[100] - 1, 5Range[20]]^2 (* Alonso del Arte, Dec 23 2019 *)
-
Scala
((1 to 99 by 2).diff(5 to 100 by 5)).map(n => (n * n)) // Alonso del Arte, Dec 23 2019
Formula
a(n) = (A045572(n))^2.
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9). - R. J. Mathar, Sep 22 2009
G.f.: x*(1 + 8*x + 40*x^2 + 32*x^3 + 38*x^4 + 32*x^5 + 40*x^6 + 8*x^7 + x^8)/((1 + x)^2 * (x^2 + 1)^2 * (1 - x)^3). - R. J. Mathar, Sep 22 2009
Sum_{n>=1} 1/a(n) = 3*Pi^2/25. - Amiram Eldar, Dec 19 2020
Extensions
Definition corrected by R. J. Mathar, Sep 22 2009
Comments