A028393 Iterate the map in A006368 starting at 8.
8, 12, 18, 27, 20, 30, 45, 34, 51, 38, 57, 43, 32, 48, 72, 108, 162, 243, 182, 273, 205, 154, 231, 173, 130, 195, 146, 219, 164, 246, 369, 277, 208, 312, 468, 702, 1053, 790, 1185, 889, 667, 500, 750, 1125, 844, 1266, 1899, 1424, 2136, 3204, 4806, 7209, 5407
Offset: 0
References
- J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder, CO, 1972, pp. 49-52. - N. J. A. Sloane, Oct 04 2012
- R. K. Guy, Unsolved Problems in Number Theory, E17. - N. J. A. Sloane, Oct 04 2012
- J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 5. [From N. J. A. Sloane, Jan 21 2011]
Links
- Markus Sigg, Table of n, a(n) for n = 0..9999 (terms 0..1000 from T. D. Noe)
- J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198.
- D. Gale, Tracking the Automatic Ant And Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16. [From _N. J. A. Sloane_, Jul 14 2009]
- Index entries for sequences related to 3x+1 (or Collatz) problem
Crossrefs
Programs
-
Haskell
a028393 n = a028393_list !! n a028393_list = iterate a006368 8 -- Reinhard Zumkeller, Apr 18 2012
-
Maple
F := proc(n) option remember; if n = 0 then 8 elif 3*F(n-1) mod 2 = 0 then 3*F(n-1)/2 else round(3*F(n-1)/4); fi; end; [ seq(F(i),i=0..80) ];
-
Mathematica
f[n_?EvenQ] := 3*n/2; f[n_] := Round[3*n/4]; a[0] = 8; a[n_] := a[n] = f[a[n - 1]]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Jun 10 2013 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def F(n): if n == 0: return 8 elif 3*F(n-1)%2 == 0: return 3*F(n-1)//2 else: return (3*F(n-1)+1)//4 print([F(i) for i in range(81)]) # Michael S. Branicky, Aug 12 2021 after J. H. Conway
Formula
a(n+1) = A006368(a(n)).
Comments