cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028401 The (2^n+1)-th triangular number (cf. A000217).

Original entry on oeis.org

3, 6, 15, 45, 153, 561, 2145, 8385, 33153, 131841, 525825, 2100225, 8394753, 33566721, 134242305, 536920065, 2147581953, 8590131201, 34360131585, 137439739905, 549757386753, 2199026401281, 8796099313665, 35184384671745
Offset: 2

Views

Author

Keywords

Comments

Number of types of Boolean functions of n variables under a certain group.
Also the number of ordered decompositions of 2^n into 3 nonnegative integers (e.g., 2 = 0+0+2 = 0+2+0 = 2+0+0 = 1+1+0 = 1+0+1 = 0+1+1). - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Aug 02 2007

Crossrefs

Equals 2*A036562(n-4) - 1, n > 3.
Cf. A000217.

Programs

  • Mathematica
    Drop[#, 2] &@ CoefficientList[Series[3 x^2*(1 - 5 x + 5 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Jul 08 2019 *)
  • Python
    def A028401(n): return ((m:=1<2 else 3 # Chai Wah Wu, Jul 11 2024

Formula

From Ralf Stephan, Aug 23 2003: (Start)
a(n) = (3/8)*2^n + (1/32)*4^n + 1.
a(n) = 3*A007581(n-2) = (3/4)*A060919(n-1). (End)
a(n) = (2^n+4)*(2^n+8)/32. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Aug 02 2007
G.f.: 3*x^2*(1-5*x+5*x^2)/((1-x)*(1-2*x)*(1-4*x)). - Colin Barker, Mar 09 2012
a(n) = a(n-1) + 3*A000217(2^(n-3)) for n > 2. - Daniel Poveda Parrilla, Dec 27 2016
E.g.f.: (32*exp(x) + 12*exp(2*x) + exp(4*x) - 45 - 60*x)/32. - Stefano Spezia, Jul 11 2024

Extensions

More terms from Vladeta Jovovic, Feb 24 2000
Simpler definition from Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Aug 02 2007