A028412 Rectangular array of numbers Fibonacci(m(n+1))/Fibonacci(m), m >= 1, n >= 0, read by downward antidiagonals.
1, 1, 1, 1, 3, 2, 1, 4, 8, 3, 1, 7, 17, 21, 5, 1, 11, 48, 72, 55, 8, 1, 18, 122, 329, 305, 144, 13, 1, 29, 323, 1353, 2255, 1292, 377, 21, 1, 47, 842, 5796, 15005, 15456, 5473, 987, 34, 1, 76, 2208, 24447, 104005, 166408, 105937, 23184, 2584, 55, 1, 123, 5777
Offset: 0
Examples
1 1 1 1 1 1 1 3 4 7 11 18 2 8 17 48 122 323 3 21 72 329 1353 5796 5 55 305 2255 15005 104005 8 144 1292 15456 166408 1866294 13 377 5473 105937 1845493 33489287 ...
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 142.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1829
- I. Strazdins, Lucas factors and a Fibonomial generating function, in Applications of Fibonacci numbers, Vol. 7 (Graz, 1996), 401-404, Kluwer Acad. Publ., Dordrecht, 1998.
Crossrefs
Programs
-
Mathematica
max = 11; col[m_] := CoefficientList[ Series[ 1/(1 - LucasL[m]*x + (-1)^m*x^2), {x, 0, max}], x]; t = Transpose[ Table[ col[m], {m, 1, max}]] ; Flatten[ Table[ t[[n - m + 1, m]], {n, 1, max }, {m, n, 1, -1}]] (* Jean-François Alcover, Feb 21 2012, after Paul D. Hanna *) f[n_] := Fibonacci[n]; t[m_, n_] := f[m*n]/f[n] TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]] (* array *) t = Flatten[Table[t[k, n + 1 - k], {n, 1, 120}, {k, 1, n}]] (* sequence *) (* Clark Kimberling, Nov 02 2012 *)
-
PARI
{T(n,m)=polcoeff(1/(1 - Lucas(m)*x + (-1)^m*x^2 +x*O(x^n)),n)}
Formula
T(n, m) = Sum_{i_1>=0} Sum_{i_2>=0} ... Sum_{i_m>=0} C(n-i_m, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{m-1}, i_m).
G.f. for column m >= 1: 1/(1 - Lucas(m)*x + (-1)^m*x^2), where Lucas(m) = A000204(m). - Paul D. Hanna, Jan 28 2012
Extensions
More terms from Erich Friedman, Jun 03 2001
Edited by Ralf Stephan, Feb 03 2005
Better description from Clark Kimberling, Aug 28 2008
Comments