cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A028515 Expansion of A007245^6.

Original entry on oeis.org

1, 1488, 947304, 335950912, 72474624276, 9790124955552, 833107628914688, 45630592148400000, 1754954450906393538, 51062104386000089648, 1186840963302480101376, 22924552119951492244800, 378933532779364657975000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000521 (j(q)).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), A028512 (k=16), A028513 (k=32), A028514 (k=40), this sequence (k=48), A288846 (k=72).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^6, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2017 *)

Formula

a(n) ~ exp(4*Pi*sqrt(2*n)) / (2^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 29 2017
(q*j(q))^2 where j(q) is the elliptic modular invariant. - Seiichi Manyama, Jul 15 2017

A288846 Expansion of (q*j)^3, where j is a modular function A000521.

Original entry on oeis.org

1, 2232, 2251260, 1355202240, 541778118390, 151522053809760, 30456116651640888, 4460775211418664960, 479919718908048515625, 38292247221915373896560, 2309356967925215526546564, 108570959012192293978767360, 4111854826236389868361040550
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2017

Keywords

Crossrefs

Cf. A000521 (j(q)), A004009 (E_4), A008411 (E_4^3).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), A028512 (k=16), A028513 (k=32), A028514 (k=40), A028515 (k=48), this sequence (k=72).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2017 *)
    (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^3 + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)

Formula

G.f.: ((1 + 240 Sum_{k>0} k^3 q^k/(1-q^k))^3/(Product_{k>0} (1-q^k)^24))^3.
a(n) ~ 3^(1/4) * exp(4*Pi*sqrt(3*n)) / (sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Jun 29 2017

A028513 Expansion of A007245^4.

Original entry on oeis.org

1, 992, 385520, 73424000, 7032770680, 330234251072, 9708251628992, 205208814844160, 3384709979113500, 45920987396301280, 531402725344000864, 5384625599438260096, 48726640432968418240, 399835655086212744000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000521 (j(q)).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), A028512 (k=16), this sequence (k=32), A028514 (k=40), A028515 (k=48).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 15 2017 *)

Formula

(q*j(q))^(4/3) where j(q) is the elliptic modular invariant. - Seiichi Manyama, Jul 15 2017
a(n) ~ exp(8*Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jul 15 2017

A028514 Expansion of A007245^5.

Original entry on oeis.org

1, 1240, 635660, 173158720, 26866494270, 2390772025248, 123244340937400, 4235204881123840, 107367902876988285, 2147149471392237840, 35461233105160369124, 499800581310885326080, 6159994549959101077830
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000521 (j(q)).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), A028512 (k=16), A028513 (k=32), this sequence (k=40), A028515 (k=48).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^5, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 15 2017 *)

Formula

(q*j(q))^(5/3) where j(q) is the elliptic modular invariant. - Seiichi Manyama, Jul 15 2017
a(n) ~ 5^(1/4) * exp(4*Pi*sqrt(5*n/3)) / (sqrt(2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 15 2017
Showing 1-4 of 4 results.