cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A028515 Expansion of A007245^6.

Original entry on oeis.org

1, 1488, 947304, 335950912, 72474624276, 9790124955552, 833107628914688, 45630592148400000, 1754954450906393538, 51062104386000089648, 1186840963302480101376, 22924552119951492244800, 378933532779364657975000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000521 (j(q)).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), A028512 (k=16), A028513 (k=32), A028514 (k=40), this sequence (k=48), A288846 (k=72).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^6, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2017 *)

Formula

a(n) ~ exp(4*Pi*sqrt(2*n)) / (2^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 29 2017
(q*j(q))^2 where j(q) is the elliptic modular invariant. - Seiichi Manyama, Jul 15 2017

A288846 Expansion of (q*j)^3, where j is a modular function A000521.

Original entry on oeis.org

1, 2232, 2251260, 1355202240, 541778118390, 151522053809760, 30456116651640888, 4460775211418664960, 479919718908048515625, 38292247221915373896560, 2309356967925215526546564, 108570959012192293978767360, 4111854826236389868361040550
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2017

Keywords

Crossrefs

Cf. A000521 (j(q)), A004009 (E_4), A008411 (E_4^3).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), A028512 (k=16), A028513 (k=32), A028514 (k=40), A028515 (k=48), this sequence (k=72).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2017 *)
    (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^3 + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)

Formula

G.f.: ((1 + 240 Sum_{k>0} k^3 q^k/(1-q^k))^3/(Product_{k>0} (1-q^k)^24))^3.
a(n) ~ 3^(1/4) * exp(4*Pi*sqrt(3*n)) / (sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Jun 29 2017

A028512 Character of extremal vertex operator algebra of rank 16.

Original entry on oeis.org

1, 496, 69752, 2115008, 34670620, 394460000, 3499148224, 25817318016, 165011628166, 939112182480, 4853601292512, 23116070653888, 102602164703800, 428200065370144, 1692346392263680, 6371305129660032
Offset: 0

Views

Author

Keywords

References

  • G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.

Crossrefs

Cf. A000521 (j(q)).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), this sequence (k=16), A028513 (k=32), A028514 (k=40), A028515 (k=48).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 15 2017 *)
    CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^2 / (2*QPochhammer[-1, x])^16, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)

Formula

Square of A007245.
(q*j(q))^(2/3) where j(q) is the elliptic modular invariant. - Seiichi Manyama, Jul 15 2017
a(n) ~ exp(4*Pi*sqrt(2*n/3)) / (6^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jul 15 2017

A028513 Expansion of A007245^4.

Original entry on oeis.org

1, 992, 385520, 73424000, 7032770680, 330234251072, 9708251628992, 205208814844160, 3384709979113500, 45920987396301280, 531402725344000864, 5384625599438260096, 48726640432968418240, 399835655086212744000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000521 (j(q)).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), A028512 (k=16), this sequence (k=32), A028514 (k=40), A028515 (k=48).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 15 2017 *)

Formula

(q*j(q))^(4/3) where j(q) is the elliptic modular invariant. - Seiichi Manyama, Jul 15 2017
a(n) ~ exp(8*Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jul 15 2017
Showing 1-4 of 4 results.