cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028514 Expansion of A007245^5.

Original entry on oeis.org

1, 1240, 635660, 173158720, 26866494270, 2390772025248, 123244340937400, 4235204881123840, 107367902876988285, 2147149471392237840, 35461233105160369124, 499800581310885326080, 6159994549959101077830
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000521 (j(q)).
(q*j(q))^(k/24): A289397 (k=-1), A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12), A028512 (k=16), A028513 (k=32), this sequence (k=40), A028515 (k=48).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[x, x^2]^8 + 256*x/QPochhammer[x, x^2]^16)^5, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 15 2017 *)

Formula

(q*j(q))^(5/3) where j(q) is the elliptic modular invariant. - Seiichi Manyama, Jul 15 2017
a(n) ~ 5^(1/4) * exp(4*Pi*sqrt(5*n/3)) / (sqrt(2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 15 2017