A028553 Numbers k such that k*(k+3) is a palindrome.
0, 1, 8, 28, 66, 88, 211, 298, 671, 2126, 2998, 28814, 29369, 29998, 63701, 212206, 212671, 299998, 636776, 2122206, 2861419, 2999998, 9443423, 21341691, 28862883, 29999998, 212325206, 289053683, 294127328, 294174669, 299999998, 2134473706, 2946920844, 2999999998
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..40
- Patrick De Geest, Palindromic Quasipronics
- Patrick De Geest, Palindromic Sums 2
- Erich Friedman, What's Special About This Number? (See entries 298, 2126, 2998.)
Programs
-
Mathematica
(Sqrt[4#+9]-3)/2&/@Select[Table[k(k+3),{k,0,3*10^6}],PalindromeQ] (* The program generates the first 22 terms of the sequence. *) (* Harvey P. Dale, Oct 03 2023 *)
-
Python
n, m, A028553_list = 0, 0, [] while n < 10**12: s = str(m) if s == s[::-1]: A028553_list.append(n) m += 2*(n+2) n += 1 # Chai Wah Wu, Feb 20 2021
Extensions
More terms from Chai Wah Wu, Feb 20 2021
Comments