cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A136028 Expansion of (phi(q) * phi(q^2))^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 6, 18, 44, 90, 144, 212, 288, 330, 418, 528, 588, 836, 1008, 1056, 1440, 1386, 1356, 1894, 1644, 2064, 2880, 2484, 3168, 3428, 2838, 3696, 3864, 4128, 5040, 5280, 5760, 5418, 5656, 5988, 5376, 7678, 8208, 7572, 10080, 8208, 7788, 10560, 8652, 10404, 13104
Offset: 0

Views

Author

Michael Somos, Dec 10 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 6*q + 18*q^2 + 44*q^3 + 90*q^4 + 144*q^5 + 212*q^6 + 288*q^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 3), 46);  A[1] + 6*A[2] + 18*A[3] + 44*A[4] + 90*A[5] + 144*A[6] + 212*A[7]; /* Michael Somos, Oct 14 2015 */
  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1-x^k)^2 * (1+x^k)^4 * (1+x^(2*k)) / (1+x^(4*k))^2)^3,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2])^3, {q, 0, n}]; (* Michael Somos, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^2 + A) * eta(x^4 + A))^3 / (eta(x + A) * eta(x^8 + A))^2)^3, n))};
    

Formula

Expansion of (eta(q^2) * eta(q^4))^9 / (eta(q) * eta(q^8))^6 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1/(8 t)) = 2^(9/2) (t/i)^3 f(t) where q = exp(2 Pi i t).
G.f.: (Product_{k>0} (1 - x^k)^2 * (1 + x^k)^4 * (1 + x^(2*k)) / (1 + x^(4*k))^2)^3.
a(n) = A029713(n) + 6 * A030207(n). Convolution of A033715 and A097057.
a(n) = A028578(4*n). - Michael Somos, Oct 14 2015
Showing 1-1 of 1 results.