A028641 Expansion of theta_3(q) * theta_3(q^19) + theta_2(q) * theta_2(q^19) in powers of q.
1, 2, 0, 0, 2, 4, 0, 4, 0, 2, 0, 4, 0, 0, 0, 0, 2, 4, 0, 2, 4, 0, 0, 4, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 4, 0, 6, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 4, 0, 4, 2, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 2, 8, 0, 0, 4, 2, 0, 4, 0, 8, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 6, 4, 0, 0, 0
Offset: 0
Examples
G.f. = 1 + 2*x + 2*x^4 + 4*x^5 + 4*x^7 + 2*x^9 + 4*x^11 + 2*x^16 + 4*x^17 + 2*x^19 + ...
References
- Robert Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 409, Eq. (19).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references).
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n < 1, Boole[ n == 0], DivisorSum[ n, KroneckerSymbol[ -19, #] &] 2]; (* Michael Somos, Jun 14 2012 *)
-
PARI
{a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-19, d)) * 2)}; /* Michael Somos, Feb 27 2007 */
-
PARI
{a(n) = if( n<1, n==0, qfrep([2, 1;1, 10], n, 1)[n] * 2)}; /* Michael Somos, Feb 27 2007 */
Formula
Theta series of quadratic form with Gram matrix [ 2, 1; 1, 10 ].
Expansion of phi(q) * phi(q^19) + 4 * q^5 * psi(q^2)* psi(q^38) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 27 2007
Moebius transform is period 19 sequence [2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, 2, 2, -2, 0, ...]. - Michael Somos, Feb 27 2007
a(n) = 2*b(n) where b(n) is multiplicative with a(0) = 1, b(19^e) = 1, b(p^e) = e + 1 if Kronecker(-19, p) = 1, b(p^e) = (1 + (-1)^e)/2 if Kronecker(-19, p) = -1. - Michael Somos, Feb 27 2007
a(n) = 2 * A035171(n) unless n = 0. - Jianing Song, Sep 06 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(19) = 1.441461... . - Amiram Eldar, Dec 16 2023
Comments