A028816 Numbers k such that k^2 is a palindrome with an odd number of digits.
0, 1, 2, 3, 11, 22, 26, 101, 111, 121, 202, 212, 264, 307, 1001, 1111, 2002, 2285, 2636, 10001, 10101, 10201, 11011, 11111, 11211, 20002, 20102, 22865, 24846, 30693, 100001, 101101, 110011, 111111, 200002, 1000001, 1001001, 1002001, 1010101, 1011101, 1012101
Offset: 1
Links
- P. De Geest, Subsets of Palindromic Squares
Crossrefs
Cf. A028817.
Programs
-
Mathematica
id[n_]:=IntegerDigits[n]; palQ[n_]:=FromDigits[Reverse[id[n]]]==n; t={}; Do[If[palQ[x=n^2] && OddQ[Length[id[x]]], AppendTo[t,n]],{n,1012102}]; t (* Jayanta Basu, May 13 2013 *) Join[{0},Select[Range[11 10^5],OddQ[IntegerLength[#^2]]&&PalindromeQ[#^2]&]] (* Harvey P. Dale, Jul 18 2025 *)