cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028887 Theta series of 4-dimensional 5-modular lattice with det 25 and minimal norm 2.

Original entry on oeis.org

1, 6, 18, 24, 42, 6, 72, 48, 90, 78, 18, 72, 168, 84, 144, 24, 186, 108, 234, 120, 42, 192, 216, 144, 360, 6, 252, 240, 336, 180, 72, 192, 378, 288, 324, 48, 546, 228, 360, 336, 90, 252, 576, 264, 504, 78, 432, 288, 744, 342, 18, 432, 588, 324, 720, 72, 720, 480
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 6*x + 18*x^2 + 24*x^3 + 42*x^4 + 6*x^5 + 72*x^6 + 48*x^7 + ...
G.f. = 1 + 6*q^2 + 18*q^4 + 24*q^6 + 42*q^8 + 6*q^10 + 72*q^12 + 48*q^14 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 463 Entry 4(i).

Programs

  • Magma
    Basis( ModularForms( Gamma0(5), 2), 70) [1]; /* Michael Somos, Jun 12 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], 6 Sum[ If[ Mod[ d, 5] > 0, d, 0], {d, Divisors @ n }]];  (* Michael Somos, Jun 12 2014 *)
    a[ n_] := SeriesCoefficient[ 1 + 6 Sum[ k x^k / (1 - x^k) - 5 k x^(5 k) / (1 - x^(5 k)), {k, n}], {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 6 * sumdiv(n, d, (d%5>0) * d))}; /* Michael Somos, Feb 04 2006 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [ 2, 1, 0, 0; 1, 2, 1, 0; 0, 1, 4, 5; 0, 0, 5, 10]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n, 1)), n))}; /* Michael Somos, Jun 12 2014 */
    
  • Sage
    ModularForms( Gamma0(5), 2, prec=70).0;  # Michael Somos, Jun 12 2014
    

Formula

a(n) = 6*b(n) where b(n) is multiplicative with a(0) = 1, b(5^e) = 1, b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise. - Michael Somos, Feb 04 2006
G.f. 1 + 6 * (Sum_{k>0} k * x^k / (1 - x^k) - 5*k * x^(5*k) / (1 - x^(5*k))). - Michael Somos, Feb 04 2006