cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A116073 Sum of the divisors of n that are not divisible by 5.

Original entry on oeis.org

1, 3, 4, 7, 1, 12, 8, 15, 13, 3, 12, 28, 14, 24, 4, 31, 18, 39, 20, 7, 32, 36, 24, 60, 1, 42, 40, 56, 30, 12, 32, 63, 48, 54, 8, 91, 38, 60, 56, 15, 42, 96, 44, 84, 13, 72, 48, 124, 57, 3, 72, 98, 54, 120, 12, 120, 80, 90, 60, 28, 62, 96, 104, 127, 14, 144, 68, 126, 96, 24
Offset: 1

Views

Author

Michael Somos, Feb 04 2006

Keywords

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 463 Entry 4(i).

Crossrefs

Cf. A028887(n) = 6*a(n) if n>0.
Cf. A145466.
Cf. A091703, A035207 (number of divisors of n that are not divisible by 5).

Programs

  • Mathematica
    f[p_, e_] := If[p == 5, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    a(n) = if(n<1, 0, sumdiv(n,d,(d%5>0)*d))

Formula

a(n) is multiplicative with a(5^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) otherwise.
G.f.: Sum_{k>0} k*x^k/(1-x^k) - 5*k*x^(5*k)/(1-x^(5*k)).
L.g.f.: log(Product_{k>=1} (1 - x^(5*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (Pi^2/15) * n^2. - Amiram Eldar, Oct 04 2022
Inverse Mobius transf. of A091703. Dirichlet g.f. (1-5^(1-s))*zeta(s-1)*zeta(s). - R. J. Mathar, May 17 2023

A227131 Sum of divisors of n that are not divisible by 25. a(0) = 1.

Original entry on oeis.org

1, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 6, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 18, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144, 72, 195, 74, 114, 24, 140
Offset: 0

Views

Author

Michael Somos, Jul 02 2013

Keywords

Examples

			G.f. = 1 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 13*q^9 + ...
75 has six divisors: 1, 3, 5, 15, 25, 75, but both 25 and 75 are divisible by 25, thus not counted, and we have a(75) = 1+3+5+15 = 24. - _Antti Karttunen_, Nov 23 2017
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(25), 2), 66); A[1] + A[2] + 3*A[3] + 4*A[4] + 7*A[5]; /* Michael Somos, Jun 12 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], Sum[ If[ Mod[ d, 25] > 0, d, 0], {d, Divisors @ n}]];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, if( d%25, d)))};
    
  • PARI
    {a(n) = if( n<1, n==0, 1 * (sigma(n) - if( n%25==0, 25 * sigma( n / 25))))};
    
  • Sage
    A = ModularForms( Gamma0(25), 2, prec=66) . basis(); A[0] + A[1] + 3*A[2] + 4*A[3] + 7*A[4];
    

Formula

a(n) is multiplicative with a(0) = 1, a(5^e) = 6 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (25 t)) = 25 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: 1 + Sum_{k>0} k * x^k / (1 - x^k) - Sum_{k>0} 25 * k * x^(25*k) / (1 - x^(25*k)).
Sum_{k=1..n} a(k) ~ (2*Pi^2/25) * n^2. - Amiram Eldar, Oct 04 2022

Extensions

More terms from Antti Karttunen, Nov 23 2017

A235870 Expansion of ( f(-q)^12 + 22 * q * f(-q)^6 * f(-q^5)^6 + 125 * q^2 * f(-q^5)^12 ) / (f(-q) * f(-q^5))^2 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 12, 72, 264, 696, 1380, 2304, 3192, 5400, 6924, 12600, 12384, 18912, 20184, 28512, 39000, 43032, 45432, 63144, 63600, 101640, 88944, 110304, 112104, 151200, 174540, 183024, 188400, 231936, 225000, 351360, 274704, 346392, 344448, 407952, 479400, 509592
Offset: 0

Views

Author

Michael Somos, Jun 13 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 12*q + 72*q^2 + 264*q^3 + 696*q^4 + 1380*q^5 + 2304*q^6 + ...
		

Crossrefs

Cf. A028887.

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(5), 4), 36); A[1] + 12*A[2] + 72*A[3]; /* Michael Somos, Jun 13 2014 */
  • PARI
    {a(n) = my(A, u1, u5); if( n<0, 0, A = x * O(x^n); u1 = eta(x + A); u5 = eta(x^5 + A); polcoeff( ( u1^12 + 22*x * (u1 * u5)^6 + 125*x^2 * u5^12 ) / (u1 * u5)^2, n))};
    
  • PARI
    {a(n) = my(A, v1, v3); if( n<0, 0, A = x * O(x^n); v1 = eta(x + A) * eta(x^5 + A) ; v3 = eta(x^3 + A) * eta(x^15 + A) ; polcoeff( ( v1^4 + 9*x * (v1 * v3)^2 + 27*x^2 * v3^4 )^2 / (v1 * v3)^2, n))};
    
  • Sage
    A = ModularForms( Gamma0(5), 4, prec=36) . basis(); A[1] + 12/13 * (3*A[0] + 10*A[2]); # Michael Somos, Jun 13 2014
    

Formula

Expansion of ( ( (f(-q) * f(-q^5))^4 + 9*q * (f(-q) * f(-q^3) * f(-q^5) * f(-q^15))^2 + 27*q * (f(-q^3) * f(-q^15))^4 ) / (f(-q) * f(-q^3) * f(-q^5) * f(-q^15)) )^2 in powers of q where f() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 25 (t/i)^4 f(t) where q = exp(2 Pi i t).
Convolution square of A028887.

A249010 Expansion of (P(q) - 3*P(q^2) - 5*P(q^5) + 15*P(q^10)) / 8 in powers of q where P() is a Ramanujan Eisenstein series.

Original entry on oeis.org

1, -3, 0, -12, 6, -3, 0, -24, 18, -39, 0, -36, 24, -42, 0, -12, 42, -54, 0, -60, 6, -96, 0, -72, 72, -3, 0, -120, 48, -90, 0, -96, 90, -144, 0, -24, 78, -114, 0, -168, 18, -126, 0, -132, 72, -39, 0, -144, 168, -171, 0, -216, 84, -162, 0, -36, 144, -240, 0
Offset: 0

Views

Author

Michael Somos, Oct 18 2014

Keywords

Comments

Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 - 3*q - 12*q^3 + 6*q^4 - 3*q^5 - 24*q^7 + 18*q^8 - 39*q^9 + ...
		

Crossrefs

Cf. A028887.

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(10), 2), 60); A[1] - 3*A[2];
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); -3 * prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==2,  2 - 2^e, if( p==5, 1, (p^(e+1) - 1) / (p - 1))))))};
    
  • PARI
    {a(n) = if( n<1, n==0, -3 * sumdiv(n, k, n/k * [8, 1, -2, 1, -2, -4, -2, 1, -2, 1][k%10 + 1]))};
    
  • PARI
    {a(n) = if( n<1, n==0, -3/2 * sumdiv(n, k, k * [0, 2, -1, 2, -1, 0, -1, 2, -1, 2][k%10 + 1]))};
    

Formula

If n>0 then a(n) = -3 * b(n) where b is multiplicative with b(2^e) = 2 - 2^e, b(5^e) = 1, and b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: 1 - 3 * Sum_{k>0} c(k) * x^k / (1 - x^k)^2 where c(k) is a period 10 integer sequence.
G.f.: 1 - 3/2 * Sum_{k>0} c(k) * k * x^k / (1 - x^k) where c(k) is a period 10 integer sequence.
a(4*n) = A028887(n). a(4*n + 2) = 0.
Showing 1-4 of 4 results.