A028920 Pit harvesting sequence for winning solitaire Tchoukaillon (or Mancala).
1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 3, 1, 7, 1, 2, 1, 8, 1, 4, 1, 2, 1, 3, 1, 9, 1, 2, 1, 10, 1, 5, 1, 2, 1, 3, 1, 11, 1, 2, 1, 4, 1, 12, 1, 2, 1, 3, 1, 6, 1, 2, 1, 13, 1, 14, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 7, 1, 2, 1, 3, 1, 15, 1, 2, 1, 16, 1, 4, 1, 2, 1, 3, 1, 8, 1, 2, 1, 6, 1, 5, 1, 2, 1, 3, 1, 17, 1
Offset: 0
Keywords
Links
- L. K. Mitchell, Table of n, a(n) for n=0..3280
- Franklin T. Adams-Watters, Doubly Fractal Sequences and ordinal transform
- D. M. Broline and Daniel E. Loeb, The combinatorics of Mancala-Type games: Ayo, Tchoukaillon and 1/Pi, arXiv:math/9502225 [math.CO], 1995; J. Undergrad. Math. Applic., vol. 16 (1995), pp. 21-36.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- Index entries for sequences generated by sieves
Programs
-
Mathematica
n = 15; Fold[If[Length@Position[#1, 0] > 0, ReplacePart[#1,First /@ Partition[Position[#1, 0], #2 + 1, #2 + 1, {1, 1}] -> #2], #1] &, Flatten@Array[{1, 0} &, n], Range[2, 2 n]] (* Birkas Gyorgy, Feb 26 2011 *)
-
PARI
a(n) = {ok = 0; m = 1; while (!ok, if ((n%(m+1) == 0), ok = 1, n = n*m\(m+1); m++);); m;} \\ Michel Marcus, Dec 06 2015
Formula
a(2n+1) = 1 + A104706(n+1), a(2n) = 1. - Benoit Cloitre, Mar 09 2007
Extensions
Additional comments from David W. Wilson, Feb 25 2010
Comments