cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028928 Theta series of quadratic form (or lattice) with Gram matrix [ 3, 1; 1, 5 ].

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 2, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 6, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 6, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 6, 2, 0, 0, 0, 0, 2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The number of integer solutions (x, y) to n = 3*x^2 + 2*x*y + 5*y^2, discriminant -56. - Ray Chandler, Jul 12 2014

Examples

			G.f. = 1 + 2*q^3 + 2*q^5 + 2*q^6 + 2*q^10 + 2*q^12 + 2*q^13 + 2*q^19 + 2*q^20 + 2*q^21 + 2*q^24 + 2*q^26 + 4*q^27 + 2*q^35 + 2*q^38 + 2*q^40 + 2*q^42 + 6*q^45 + ...
		

Crossrefs

Cf. A106915.

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], If[ -1 != KroneckerSymbol[ -7, n / 7^IntegerExponent[ n, 7]], 0, Sum[ KroneckerSymbol[ -14, d], { d, Divisors @ n}]]]; (* Michael Somos, Jul 13 2011 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep([3, 1; 1, 5], n)[n] * 2)}; /* Michael Somos, Jun 06 2011 */
    
  • PARI
    {a(n) = if( n<1, n==0, (-1 == kronecker( -7, n / 7^valuation( n, 7))) * sumdiv( n, d, kronecker( -14, d)))}; /* Michael Somos, Jun 22 2011 */

Formula

Expansion of phi(q^3) * phi(q^42) + 2*q^5 * chi(q) * psi(-q^3) * chi(q^14) * psi(-q^42) = phi(q^6) * phi(q^21) + 2*q^3 * chi(q^2) * psi(-q^6) * chi(q^7) * psi(-q^21) = phi(q^2) * phi(q^7) - 2*q^2 * phi(-q^4) * psi(q^7) * chi(-q) / chi(-q^28) in powers of q where phi(), psi(), chi() are Ramanujan theta functions - Michael Somos and Alex Berkovich, Jun 06 2011
Expansion of - phi(q) * phi(q^14) + 2 * chi(q) * f(-q^7) * f(-q^8) * chi(q^14) in powers of q where phi(), chi(), f() are Ramanujan theta functions - Michael Somos, Jun 22 2011
G.f.: Sum_{n, m in Z} x^(3*n*n + 2*n*m + 5*m*m).