A028928 Theta series of quadratic form (or lattice) with Gram matrix [ 3, 1; 1, 5 ].
1, 0, 0, 2, 0, 2, 2, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 6, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 6, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 6, 2, 0, 0, 0, 0, 2, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q^3 + 2*q^5 + 2*q^6 + 2*q^10 + 2*q^12 + 2*q^13 + 2*q^19 + 2*q^20 + 2*q^21 + 2*q^24 + 2*q^26 + 4*q^27 + 2*q^35 + 2*q^38 + 2*q^40 + 2*q^42 + 6*q^45 + ...
Links
- John Cannon, Table of n, a(n) for n = 0..10000
- Michael Gilleland, Some Self-Similar Integer Sequences
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A106915.
Programs
-
Mathematica
a[ n_] := If[ n < 1, Boole[ n == 0], If[ -1 != KroneckerSymbol[ -7, n / 7^IntegerExponent[ n, 7]], 0, Sum[ KroneckerSymbol[ -14, d], { d, Divisors @ n}]]]; (* Michael Somos, Jul 13 2011 *)
-
PARI
{a(n) = if( n<1, n==0, qfrep([3, 1; 1, 5], n)[n] * 2)}; /* Michael Somos, Jun 06 2011 */
-
PARI
{a(n) = if( n<1, n==0, (-1 == kronecker( -7, n / 7^valuation( n, 7))) * sumdiv( n, d, kronecker( -14, d)))}; /* Michael Somos, Jun 22 2011 */
Formula
Expansion of phi(q^3) * phi(q^42) + 2*q^5 * chi(q) * psi(-q^3) * chi(q^14) * psi(-q^42) = phi(q^6) * phi(q^21) + 2*q^3 * chi(q^2) * psi(-q^6) * chi(q^7) * psi(-q^21) = phi(q^2) * phi(q^7) - 2*q^2 * phi(-q^4) * psi(q^7) * chi(-q) / chi(-q^28) in powers of q where phi(), psi(), chi() are Ramanujan theta functions - Michael Somos and Alex Berkovich, Jun 06 2011
Expansion of - phi(q) * phi(q^14) + 2 * chi(q) * f(-q^7) * f(-q^8) * chi(q^14) in powers of q where phi(), chi(), f() are Ramanujan theta functions - Michael Somos, Jun 22 2011
G.f.: Sum_{n, m in Z} x^(3*n*n + 2*n*m + 5*m*m).
Comments