cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028945 a(n) = A006720(n)^2 (squared terms of Somos-4 sequence).

Original entry on oeis.org

1, 1, 1, 1, 4, 9, 49, 529, 3481, 98596, 2337841, 67387681, 6941055969, 384768368209, 61935294530404, 16063784753682169, 2846153597907293521, 2237394491744632911601, 1262082793174195430038441, 1063198259901027900600665796
Offset: 0

Views

Author

Keywords

Comments

If first two 1's are omitted, denominator of x-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,4,9,49]; [n le 7 select I[n] else (- 4*Self(n-6)*Self(n-1) + 29*Self(n-5)*Self(n-2) + 116*Self(n-4)*Self(n-3) )/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    b[n_ /; 0 <= n <= 4] = 1; b[n_]:= b[n] = (b[n-1]*b[n-3] + b[n-2]^2)/b[n -4]; Table[(b[n])^2, {n,0,30}] (* G. C. Greubel, Feb 21 2018 *)
  • PARI
    {b(n) = if(n< 4, 1, (b(n-1)*b(n-3) + b(n-2)^2)/b(n-4))};
    for(n=0,30, print1((b(n))^2, ", ")) \\ G. C. Greubel, Feb 21 2018
    

Formula

P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 -b*a'/a).
a(n) = (- 4 a(n - 6) a(n - 1) + 29 a(n - 5) a(n - 2) + 116 a(n - 4) a(n - 3))/a(n-7). - Bill Gosper, May 14 2009
5P = (1/4, -5/8).
0 = a(n)*a(n+6) - 5*a(n+1)*a(n+5) + 4*a(n+2)*a(n+4) - 20*a(n+3)^2 for all n in Z. - Michael Somos, Apr 12 2020

Extensions

Edited by N. J. A. Sloane, May 14 2009