cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028959 Theta series of quadratic form with Gram matrix [ 2, 1; 1, 12 ].

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 4, 0, 4, 2, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 2, 4, 2, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 4, 0, 4, 0, 0, 0, 4, 4, 0, 0, 4, 0, 6, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 4, 0, 0, 2, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 4, 4, 0, 8, 0, 0
Offset: 0

Views

Author

Keywords

Comments

theta[2,1;1,2d](z)=theta_3(z)*theta_3((4d-1)z)+theta_2(z)*theta_2((4d-1)z), generalizing the formula for theta(A_2), which is the case d=1 - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 16 2000.
The number of integer solutions (x, y) to x^2 + x*y + 6*y^2 = n, discriminant -23. - Ray Chandler, Jul 12 2014
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^4 + 4*x^6 + 4*x^8 + 2*x^9 + 4*x^12 + 2*x^16 + 4*x^18 + ...
G.f. = 1 + 2*q^2 + 2*q^8 + 4*q^12 + 4*q^16 + 2*q^18 + 4*q^24 + 2*q^32 + 4*q^36 + 2*q^46 + 4*q^48 + 2*q^50 + 4*q^52 + 4*q^54 + 4*q^64 + 6*q^72 + 4*q^78 + 8*q^96 + ...
		

References

  • Köklüce, Bülent. "Cusp forms in S_6 (Gamma_ 0(23)), S_8 (Gamma_0 (23)) and the number of representations of numbers by some quadratic forms in 12 and 16 variables." The Ramanujan Journal 34.2 (2014): 187-208. See F_1, p. 195.

Crossrefs

Cf. A028958.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^23] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^23], {x, 0, n}]; (* Michael Somos, Mar 28 2015 *)

Formula

Expansion of phi(x) * phi(x^23) + 4*x^6 * psi(x^2) * psi(x^46) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Mar 28 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 28 2015
G.f.: (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z)).