cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029011 Expansion of 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^6)).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 9, 10, 13, 15, 19, 21, 25, 28, 33, 37, 43, 47, 54, 59, 67, 73, 82, 89, 99, 107, 118, 127, 140, 150, 164, 175, 190, 203, 220, 234, 252, 267, 287, 304, 326, 344, 367, 387, 412, 434, 461, 484, 513, 538, 569, 596, 629, 658, 693, 724, 761, 794
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5 and 6. - David Neil McGrath, Dec 06 2014
Number of walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 5-loop, 6-loop) where the order of loops is unimportant. - David Neil McGrath, Dec 06 2014

Examples

			There are 6 partitions of n=6 into parts 1, 2, 5 and 6. These are (6)(51)(222)(2211)(21111)(111111). - _David Neil McGrath_, Dec 06 2014
		

Crossrefs

Cf. A029177(2*n) = a(n).

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^5)(1-x^6)),{x,0,60}],x]
    LinearRecurrence[{1,1,-1,0,1,0,-2,0,1,0,-1,1,1,-1},{1,1,2,2,3,4,6,7,9,10,13,15,19,21},70] (* Harvey P. Dale, Dec 14 2020 *)
  • PARI
    a(n)=if(n<-13,-a(-14-n),polcoeff(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^6))+x*O(x^n),n))

Formula

G.f.: 1/((1-x)(1-x^2)(1-x^5)(1-x^6)).
a(n) = -a(-14-n).
a(n) = a(n-2) + a(n-5) + a(n-6) - a(n-7) - a(n-8) - a(n-11) + a(n-13) + 1.
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-5) - 2*a(n-7) + a(n-9) - a(n-11) + a(n-12) + a(n-13) - a(n-14). - David Neil McGrath, Dec 06 2014
a(n) = 1 + [(n mod 30)=12] + floor((2n^3 + 42*n^2 + (261+15*(-1)^n)*n)/720). - Hoang Xuan Thanh, Jun 25 2025