cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029479 Numbers k that divide the (left) concatenation of all numbers <= k written in base 10 (most significant digit on left).

Original entry on oeis.org

1, 3, 9, 19, 27, 41, 103, 147, 189, 441, 567, 711, 6759, 15353, 24441, 59823, 209903, 1430217, 2848851, 2969973, 13358067, 146247471, 289542573, 1891846557, 2388085659, 4489093899, 5345125899, 5455876131, 9843149241
Offset: 1

Views

Author

Keywords

Comments

No other terms below 10^10.

Examples

			19 is a term since 19181716151413121110987654321 is divisible by 19.
		

Crossrefs

Programs

  • Mathematica
    b = 10; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[#, b], c], b], #] &] (* Robert Price, Mar 12 2020 *)
    Select[Range[134*10^5],Divisible[FromDigits[Flatten[IntegerDigits/@Range[#,1,-1]]],#]&] (* Harvey P. Dale, Oct 09 2022 *)
  • Python
    def concat_mod(base, k, mod):
      total, offset, digits, n1 = 0, 0, 1, 1
      while n1 <= k:
        n2, p = min(n1*base-1, k), n1*base
        # Compute ((p-1)*n2-1)*p**(n2-n1+1)-(n1-1)*p+n1 divided by (p-1)**2.
        # Since (a//b)%mod == (a%(b*mod))//b, compute the numerator mod (p-1)**2*mod.
        tmp = pow(p,n2-n1+1,(p-1)**2*mod)
        tmp = ((p-1)*n2-1)*tmp-(n1-1)*p+n1
        tmp = (tmp%((p-1)**2*mod))//(p-1)**2
        total += tmp*pow(base,offset,mod)
        offset, digits, n1 = offset+digits*(n2-n1+1), digits+1, p
      return total%mod
    for k in range(1,10**10):
      if concat_mod(10, k, k) == 0: print(k) # Jason Yuen, Jan 14 2024

Extensions

6759 from Andrew Gacek (andrew(AT)dgi.net), Feb 20 2000
More terms from Larry Reeves (larryr(AT)acm.org), May 24 2001
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(18)-a(21) from Max Alekseyev, May 15 2011
a(22)-a(29) from Jason Yuen, Jan 14 2024