cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A257750 Quasi-Carmichael numbers.

Original entry on oeis.org

35, 77, 143, 165, 187, 209, 221, 231, 247, 273, 299, 323, 357, 391, 399, 437, 493, 527, 561, 589, 598, 713, 715, 899, 935, 943, 989, 1015, 1073, 1105, 1147, 1189, 1247, 1271, 1295, 1333, 1517, 1537, 1547, 1591, 1595, 1705, 1729, 1739, 1763, 1829, 1885, 1886, 1927
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 07 2015

Keywords

Comments

Quasi-Carmichael numbers are squarefree composites n with the property that for every prime factor p of n, p+b divides n+b positively with b being any integer besides 0.
If b is negative, then it is always larger than 0 minus the square root of the corresponding Quasi-Carmichael number. But if b is positive, how large can it be in relation to its corresponding Quasi-Carmichael number? Conjecture: It is always smaller than the square root of the corresponding Quasi-Carmichael number.
Are 1885 and 1886 the only two consecutive integers such that both numbers are Quasi-Carmichael numbers?
From Robert G. Wilson v, Dec 05 2015: (Start)
The conjecture that b < sqrt(n) is false. Look at n = 87061 = 13*37*181, 87365 = 5*101*173, and 96473 = 13*41*181. Their b values are 299, 331, and 351, while the corresponding sqrt(n) values are 295, 295, and 310, respectively.
For b to result in (n+b)/(p+b) > 0 with n = P_1*p_2*...*p_i and P_1 < p_2 < ... < p_i, -p_1 < b < |(n-p_i^2)/p_i|. (n+b)/(p+b) >= b+1. Solve for b.
Less than 0.5% are even (A262252). Of course they are == 2 (mod 4).
Least k-almost prime quasi-Carmichael number with k>1: 35, 165, 6545, 179998, 7509579, ..., .
(End)

Examples

			a(1) = 35 because this is the first squarefree composite number n such that at least one integer b except 0 exists such that for every prime factor p of n applies that p+b divides n+b (-3): 35 = 5*7 and 2, 4 both divide 32.
		

Crossrefs

Subsequences: A002997 (Carmichael numbers), A006972 (Lucas-Carmichael numbers), A029553 (-10), A029554 (-9), A029555 (-8), A029556 (-7), A029557 (-6), A029558 (-5), A029559 (-4), A029560 (-3), A029561 (-2), A029562 (+2), A029563 (+3), A029564 (+4), A029565 (+5), A029566 (+6), A029567 (+7), A029568 (+8), A029569 (+9), A029570 (+10), A029590 (Least quasi-Carmichael number of order n), A029591 (Least quasi-Carmichael number of order -n), A257751 (1 base), A257752 (2 bases), A257753 (3 bases), A257754 (4 bases), A257755 (5 bases), A257756 (6 bases), A257757 (7 bases), A258842 (8 bases), A257758 (first occurrences), A259282 (at least one negative base), A259283 (at least one positive base), A257759 (at least one negative base and at least one positive base).

Programs

  • Mathematica
    fQ[n_] := Block[{c = -1, fi = FactorInteger@ n, k, lmt, p}, If[Times @@ (Last@# & /@ fi) == 1 < Plus @@ (Last@# & /@ fi), p = First@# & /@ fi; k = -fi[[1, 1]] + 1; lmt = Abs[(n - fi[[-1, 1]]^2)/fi[[-1, 1]]]; While[k < lmt, If[ Union[ IntegerQ@# & /@ ((n + k)/(p + k))] == {True}, c++; If[c > 0, Goto [fini]]]; k++]]; Label[fini]; c > 0]; Select[ Range@ 2000, fQ] (* Robert G. Wilson v, Dec 05 2015 *)
  • PARI
    for(n=2,1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1),n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k>0, print1(n,", ")))))

Extensions

All terms less than 1000000 checked by Robert G. Wilson v, Dec 13 2015

A202157 a(n) = smallest k having at least two prime divisors d such that (d + n) | ( k + n).

Original entry on oeis.org

63, 18, 45, 50, 75, 66, 63, 102, 75, 50, 165, 198, 147, 258, 165, 110, 663, 182, 399, 442, 147, 242, 705, 678, 455, 786, 483, 182, 1015, 950, 1023, 988, 363, 506, 637, 1446, 1083, 322, 885, 590, 1155, 1443, 1935, 2118, 627, 770, 3243, 2502, 1407, 2706, 845
Offset: 1

Views

Author

Michel Lagneau, Dec 13 2011

Keywords

Comments

The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree: 63, 18, 45, ...

Examples

			a(8) = 102 because the prime divisors of 102 are 2, 3 and 17;
(2 + 8) | (102 + 8) = 110 = 10*11;
(3 + 8) | 110 = 11*10.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 52 do:i:=0:for k from 1 to 5000 while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if  n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>=2 then i:=1:printf(`%d, `,k):else fi:od:od:
  • Mathematica
    numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 1, k++]; k]; Array[a, 50] (* Amiram Eldar, Sep 09 2019 *)

Formula

a(n) >= n^2 + 4n + 6. [Charles R Greathouse IV, Dec 13 2011]

A202158 a(n) = smallest k having at least three prime divisors d such that (d + n) | (k + n).

Original entry on oeis.org

399, 598, 165, 1886, 715, 2370, 273, 532, 231, 935, 3445, 828, 1547, 2821, 1105, 3710, 12903, 4182, 6669, 4732, 2475, 4466, 2737, 2706, 1595, 5658, 10413, 3542, 7315, 24225, 23769, 22578, 3927, 12818, 1885, 64119, 11063, 20482, 10881, 4370, 52275, 7878, 14645
Offset: 1

Views

Author

Michel Lagneau, Dec 13 2011

Keywords

Comments

The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree.

Examples

			a(3) = 165 because the prime divisors of 165 are 3, 5, 11 =>
(3 + 3) | (165 + 3) = 168 = 6*28;
(5 + 3) | 168 = 8*21;
(11 + 3) | 168 = 14*12.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 45 do:i:=0:for k from 1 to 100000 while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if  n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>2 then i:=1:printf(`%d, `,k):else fi:od:od:
  • Mathematica
    numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 2, k++]; k]; Array[a, 40] (* Amiram Eldar, Sep 09 2019 *)

A202159 a(n) = smallest k having at least four prime divisors d such that (d + n) | (k + n).

Original entry on oeis.org

8855, 11590, 27885, 122360, 16555, 10290, 6545, 61642, 71799, 65195, 14245, 142788, 63635, 580930, 39585, 21098, 69003, 258482, 59885, 378952, 8715, 266090, 133285, 690501, 27335, 704790, 1017423, 299222, 187891, 771650, 293405, 1638598, 282315, 553610, 227205
Offset: 1

Views

Author

Michel Lagneau, Dec 13 2011

Keywords

Comments

The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree.

Examples

			a(3) = 27885 because the prime divisors of 27885 are 3, 5, 11, 13  =>
(3 + 3)| (27885 + 3) = 27888 = 6*4648;
(5 + 3) | 27888 = 8*3486;
(11 + 3) | 27888 = 14*1992;
(13 + 3) | 27888 = 16*1743.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 33 do:i:=0:for k from 1 to 5000000  while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if  n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>3 then i:=1:printf(`%d, `,k):else fi:od:od:
  • Mathematica
    numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 3, k++]; k]; Array[a, 35] (* Amiram Eldar, Sep 09 2019 *)

A029590 For n>0, a(n) is the least quasi-Carmichael number to base n; a(0) = least composite squarefree integer.

Original entry on oeis.org

6, 561, 1595, 35, 1705, 77, 13481, 187, 143, 209, 4807, 221, 14807, 493, 20723, 323, 7429, 437, 36593, 943, 713, 989, 1147, 1073, 899, 1537, 1271, 899, 1333, 1517, 104355281, 1591, 1517, 2993, 1591, 1517, 621193, 3397, 1763, 1763, 2623, 2021
Offset: 0

Views

Author

Keywords

Comments

a(n) is the least squarefree composite integer for which prime p | a(n) ==> p-n | a(n)-n.

Examples

			For n=6 the minimum is a(n)=13481. Prime factors of 13481 are 13, 17 and 61. We have 13481 - 6 = 13475, 13 - 6 = 7 and 13475 / 7 = 1925, 17 - 6 = 11 and 13475 / 11 = 1225, 61 - 6 = 55 and 13475 / 55 = 245. - _Elijah Beregovsky_, Feb 15 2020
		

Crossrefs

Cf. A029591 (base -n), A257750 (quasi-Carmichael numbers).

Programs

  • Mathematica
    qcQ[n_,k_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]];om=Length[e]; om>=2 && Max[e] == 1 && Min[p]>k && Length@Select[p, Divisible[n-k, #-k]&] == om]; seq[k_]:=SelectFirst[Range[1,50000], qcQ[#,k]&]; Print[seq/@Range[0,29]]; (* Elijah Beregovsky, Feb 15 2020 *)

A202160 a(n) = smallest k having at least five prime divisors d such that (d + n) | (k + n).

Original entry on oeis.org

588455, 179998, 460317, 6265805, 1236235, 287274, 949025, 1436932, 794871, 2013650, 3797365, 1169688, 3739827, 1587586, 6872565, 7706270, 1529983, 7351242, 2528045, 5247970, 487179, 10920965, 1316497, 121894476, 1404455, 5814874, 12223653, 2260412, 8022531
Offset: 1

Views

Author

Michel Lagneau, Dec 13 2011

Keywords

Comments

The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree.

Examples

			a(3) = 460317 because the prime divisors of 460317 are 3, 11, 13, 29, 37  =>
(3 + 3) | (460317 + 3) = 460320 = 6*76720;
(11 + 3) | 460320 = 14*32880;
(13 + 3) | 460320 = 16*28770;
(29+3)  |  460320 = 32*14385;
(37+3) | 460320 = 40*11508.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 23 do:i:=0:for k from 1 to 10^8 while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if  n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>4 then i:=1: printf ( "%d %d \n",n,k):else fi:od:od:
  • Mathematica
    numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 4, k++]; k]; Array[a, 30] (* Amiram Eldar, Sep 09 2019 *)
Showing 1-6 of 6 results.