cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A029702 Q(sqrt(n)) has class number 2.

Original entry on oeis.org

10, 15, 26, 30, 34, 35, 39, 42, 51, 55, 58, 65, 66, 70, 74, 78, 85, 87, 91, 95, 102, 105, 106, 110, 111, 114, 115, 119, 122, 123, 138, 143, 146, 154, 155, 159, 165, 174, 178, 182, 183, 185, 186, 187, 190, 194, 202, 203, 205, 215, 218, 221, 222, 230, 238, 246
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

Comments

Smallest term that is in A146209 but not this sequence is 79, since Q(sqrt(79)) has class number 3. - Alonso del Arte, Aug 25 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[246], SquareFreeQ[#] && NumberFieldClassNumber@Sqrt[#] == 2 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    A007947(n)={my(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]); }
    { for (n=2, 10^3,
        if ( n!=A007947(n), next() );
        K = bnfinit(x^2 - n);
        if ( K.cyc == [2], print1( n, ", ") );
    ); }
    /* Joerg Arndt, Oct 18 2012 */

A029704 Q(sqrt(n)) has class number 4.

Original entry on oeis.org

82, 130, 145, 170, 195, 210, 219, 231, 255, 274, 290, 291, 322, 323, 330, 370, 390, 410, 434, 435, 438, 445, 455, 462, 483, 505, 510, 514, 530, 546, 555, 570, 579, 582, 595, 610, 615, 626, 627, 651, 658, 663, 674, 689, 690, 706, 714, 715, 723, 731, 754, 759, 770
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[770], SquareFreeQ[#] && NumberFieldClassNumber@Sqrt[#] == 4 &] (* Arkadiusz Wesolowski, Oct 18 2012 *)
  • PARI
    is(n)=if(issquarefree(n), my(c=bnfinit('x^2-n).cyc); c==[4] || c==[2,2], 0) \\ Charles R Greathouse IV, Oct 18 2012

Extensions

Initial term added by Arkadiusz Wesolowski, Oct 18 2012

A081363 Smallest squarefree integer k such that Q(sqrt(k)) has class number n.

Original entry on oeis.org

2, 10, 79, 82, 401, 235, 577, 226, 1129, 1111, 1297, 730, 4759, 1534, 9871, 2305, 7054, 4954, 15409, 3601, 7057, 4762, 23593, 9634, 24859, 13321, 8761, 5626, 49281, 11665, 97753, 15130, 55339, 19882, 25601, 18226, 24337, 19834, 41614, 16899, 55966, 47959
Offset: 1

Views

Author

Dean Hickerson, Mar 19 2003

Keywords

Comments

What is known about the asymptotics of this sequence? - Charles R Greathouse IV, Jan 26 2017
Records: 2, 10, 79, 82, 401, 577, 1129, 1297, 4759, 9871, 15409, 23593, 24859, 49281, 97753, 106537, 159199, 197137, 212137, 239119, 245023, 444089, 589822, 614849, 815413, 837929, 943951, 1025494, 1224121, 1240369, 1333255, 1334026, ..., . - Robert G. Wilson v, Apr 12 2017

Crossrefs

Programs

Extensions

More terms from Max Alekseyev, Apr 28 2010
Showing 1-3 of 3 results.