A029732 Palindromic primes in base 16 (or hexadecimal), but written here in base 10.
2, 3, 5, 7, 11, 13, 17, 257, 337, 353, 401, 433, 449, 787, 883, 947, 1301, 1381, 1429, 1493, 1831, 1847, 1879, 2039, 2377, 2393, 2441, 2473, 2521, 2843, 2939, 2971, 3019, 3067, 3373, 3389, 3469, 3517, 3533, 3581, 3919, 3967, 4079, 65537
Offset: 1
Links
- Attila Olah, Table of n, a(n) for n=1..10000
- P. De Geest, Palindromic numbers beyond base 10
- Attila Olah, Table of n, a(n) for n=1..10000 (written in hexadecimal)
Programs
-
Mathematica
lst={};Do[p=Prime[n];If[IntegerDigits[p,16]==Reverse[IntegerDigits[p,16]],AppendTo[lst,p]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 31 2009 *)
-
PARI
forprime(p=2,10^4, my(d=digits(p,16)); if(d==Vecrev(d),print1(p,", "))); \\ Joerg Arndt, Aug 17 2014
-
Python
from itertools import chain from sympy import isprime from gmpy2 import digits A029732 = sorted((n for n in chain((int(digits(x,16)+digits(x,16)[::-1],16) for x in range(1,16**5)),(int(digits(x,16)+digits(x,16)[-2::-1],16) for x in range(1,16**5))) if isprime(n))) # Chai Wah Wu, Aug 16 2014