cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029751 Average theta series of odd unimodular lattices in dimension 12.

Original entry on oeis.org

1, 8, 248, 1952, 7928, 25008, 60512, 134464, 253688, 474344, 775248, 1288416, 1934432, 2970352, 4168384, 6101952, 8118008, 11358864, 14704664, 19808800, 24782928, 32809216, 39940896, 51490752, 61899872, 78150008, 92080912
Offset: 0

Views

Author

Keywords

References

  • R. A. Rankin, Modular Forms, p. 240 ff.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := (-1)^(n-1)*8*DivisorSum[n, (-1)^(n + n/#)*#^5&]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 06 2017, translated from PARI *)
  • PARI
    a(n)=if(n<1, n==0, (-1)^(n-1)*8*sumdiv(n,d,(-1)^(n+n/d)*d^5)) /* Michael Somos, Sep 21 2005 */

Formula

G.f.: 1 + 8*Sum_{k>0} k^5 x^k/(1+(-x)^k). - Michael Somos, Sep 21 2005
A000145(n) = a(n) + 16*A000735(n). - Michael Somos, Sep 21 2005