A029751 Average theta series of odd unimodular lattices in dimension 12.
1, 8, 248, 1952, 7928, 25008, 60512, 134464, 253688, 474344, 775248, 1288416, 1934432, 2970352, 4168384, 6101952, 8118008, 11358864, 14704664, 19808800, 24782928, 32809216, 39940896, 51490752, 61899872, 78150008, 92080912
Offset: 0
Keywords
References
- R. A. Rankin, Modular Forms, p. 240 ff.
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Programs
-
Mathematica
a[0] = 1; a[n_] := (-1)^(n-1)*8*DivisorSum[n, (-1)^(n + n/#)*#^5&]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 06 2017, translated from PARI *)
-
PARI
a(n)=if(n<1, n==0, (-1)^(n-1)*8*sumdiv(n,d,(-1)^(n+n/d)*d^5)) /* Michael Somos, Sep 21 2005 */
Formula
G.f.: 1 + 8*Sum_{k>0} k^5 x^k/(1+(-x)^k). - Michael Somos, Sep 21 2005