cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029758 Number of AVL trees of height n.

Original entry on oeis.org

1, 1, 3, 15, 315, 108675, 11878720875, 141106591466142946875, 19911070158545297149037891328865229296875, 396450714858513044552818188364610837019719636049876979456842033610756600341796875
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 15*x^3 + 315*x^4 + 108675*x^5 + 11878720875*x^6 + ...
		

References

  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 6.2.3 (7) and (8).

Crossrefs

Cf. A029846.
Row sums of A143897. - Alois P. Heinz, Jun 01 2009

Programs

  • Maple
    A029758 := proc(n) option remember; if n <= 1 then RETURN(1); else A029758(n-1)^2+2*A029758(n-1)*A029758(n-2); fi; end;
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = a[n-1]^2 + 2*a[n-1]*a[n-2]; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Feb 13 2015 *)
  • PARI
    {a(n) = if( n<2, n>=0, a(n-1) * (a(n-1) + 2*a(n-2)))}; /* Michael Somos, Feb 07 2004 */

Formula

a(n+1) = a(n)^2 + 2*a(n)*a(n-1).
According to Knuth (p. 715), a(n) ~ c^(2^n), where c = 1.4368728483944618758004279843355486292481149448324679771230546290458819902268... - Vaclav Kotesovec, Dec 17 2018

Extensions

More terms from N. J. A. Sloane.