A029759 Number of permutations which are the union of an increasing and a decreasing subsequence.
1, 1, 2, 6, 22, 86, 340, 1340, 5254, 20518, 79932, 311028, 1209916, 4707964, 18330728, 71429176, 278586182, 1087537414, 4249391468, 16618640836, 65048019092, 254814326164, 998953992728, 3919041821896, 15385395144092, 60438585676636
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Michael H. Albert, M. D. Atkinson, Mathilde Bouvel, Nik Ruškuc and Vincent Vatter, Geometric grid classes of permutations, arXiv:1108.6319 [math.CO], 2011-2012.
- M. H. Albert and V. Vatter, Generating and enumerating 321-avoiding and skew-merged simple permutations, arXiv preprint arXiv:1301.3122 [math.CO], 2013. - _N. J. A. Sloane_, Feb 11 2013
- M. D. Atkinson, Permutations which are the union of an increasing and a decreasing subsequence, Electronic Journal of Combinatorics, R6 of Volume 5(1), 1998.
- CombOS - Combinatorial Object Server, Generate pattern-avoiding permutations
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
- Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
Programs
-
Maple
a := n -> binomial(2*n, n) - add(2^(n-m-1)*binomial(2*m, m), m = 0.. n-1); # second program: A029759 := n -> add((-1)^k*binomial(2*iquo(k, 2), iquo(k, 2))*binomial(n, k)*2^(n-k), k = 0 .. n): seq(A029759(n), n = 0 .. 25); # Mélika Tebni, Mar 22 2024
-
Mathematica
CoefficientList[Series[(1 - 3 x) / ((1 - 2 x) Sqrt[1 - 4 x]), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 25 2013 *)
Formula
G.f.: (1-3*x)/((1-2*x)*sqrt(1-4*x)). - Vincent Vatter, Jun 21 2011
D-finite with recurrence: n*a(n) +(-9*n+8)*a(n-1) +2*(13*n-23)*a(n-2) +12*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 24 2013
a(n) ~ 2^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 18 2014
a(n) = (binomial(2*n, n)*(hypergeom([1, n+1/2], [n+1], 2) + 2) + i*2^n)/2, where i is the imaginary unit. - Peter Luschny, Oct 25 2018