cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029759 Number of permutations which are the union of an increasing and a decreasing subsequence.

Original entry on oeis.org

1, 1, 2, 6, 22, 86, 340, 1340, 5254, 20518, 79932, 311028, 1209916, 4707964, 18330728, 71429176, 278586182, 1087537414, 4249391468, 16618640836, 65048019092, 254814326164, 998953992728, 3919041821896, 15385395144092, 60438585676636
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a := n -> binomial(2*n, n) - add(2^(n-m-1)*binomial(2*m, m), m = 0.. n-1);
    # second program:
    A029759 := n -> add((-1)^k*binomial(2*iquo(k, 2), iquo(k, 2))*binomial(n, k)*2^(n-k), k = 0 .. n): seq(A029759(n), n = 0 .. 25); # Mélika Tebni, Mar 22 2024
  • Mathematica
    CoefficientList[Series[(1 - 3 x) / ((1 - 2 x) Sqrt[1 - 4 x]), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 25 2013 *)

Formula

G.f.: (1-3*x)/((1-2*x)*sqrt(1-4*x)). - Vincent Vatter, Jun 21 2011
D-finite with recurrence: n*a(n) +(-9*n+8)*a(n-1) +2*(13*n-23)*a(n-2) +12*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 24 2013
a(n) ~ 2^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 18 2014
a(n) = (binomial(2*n, n)*(hypergeom([1, n+1/2], [n+1], 2) + 2) + i*2^n)/2, where i is the imaginary unit. - Peter Luschny, Oct 25 2018
a(n) = Sum_{k=0..n} (-1)^k*A000984(floor(k/2))*A038207(n,k). - Mélika Tebni, Mar 22 2024