A320827
G.f.: -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1).
Original entry on oeis.org
-1, 1, 1, 3, 11, 41, 151, 549, 1977, 7075, 25229, 89831, 319881, 1140523, 4075321, 14603243, 52501659, 189440937, 686181711, 2495243373, 9109701699, 33388293177, 122840931891, 453622854873, 1681057537359, 6250742452125, 23316503569983, 87236431248445
Offset: 0
-
m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt(1-4*x)*(1-2*x)/(3*x-1))); // G. C. Greubel, Oct 27 2018
-
ogf := x -> -sqrt(1 - 4*x)*(2*x - 1)/(3*x - 1);
ser := series(ogf(x), x, 30); seq(coeff(ser, x, k), k=0..27);
# By recurrence:
a := proc(n) option remember; if n <= 4 then return [-1,1,1,3,11][n+1] fi;
((-90+66*n-12*n^2)*a(n-2)+(30-34*n+7*n^2)*a(n-1))/((n-4)*n) end:
seq(a(n), n=0..27);
-
a[n_] := (-4)^n Binomial[3/2,n]((4/3)n - 2 + Hypergeometric2F1[1,-n, 5/2 - n, 3/4]); Table[a[n], {n, 0, 27}]
CoefficientList[Series[Sqrt[1-4*x]*(1-2*x)/(3*x-1), {x, 0, 40}], x] (* G. C. Greubel, Oct 27 2018 *)
-
x='x+O('x^40); Vec(sqrt(1-4*x)*(1-2*x)/(3*x-1)) \\ G. C. Greubel, Oct 27 2018
A220589
Number of simple skew-merged permutations with n elements.
Original entry on oeis.org
2, 2, 8, 16, 44, 108, 284, 740, 1966, 5254, 14172, 38476, 105122, 288754, 797036, 2209588, 6149618, 17176186, 48129284, 135261796, 381169532, 1076824852, 3049109912, 8652239496, 24600592454, 70075316198, 199955694616
Offset: 4
-
Rest[Rest[Rest[Rest[CoefficientList[Series[(1-2*x-x^2+(x-1)*Sqrt[1-2*x-3*x^2])/(x+1), {x, 0, 20}], x]]]]] (* Vaclav Kotesovec, Jan 16 2013 *)
A372239
Expansion of (1 + 2*x) / ((1 - 2*x)*sqrt(1 - 4*x)).
Original entry on oeis.org
1, 6, 22, 76, 262, 916, 3260, 11800, 43334, 161028, 604052, 2283048, 8681116, 33171144, 127260088, 489870896, 1891057222, 7317881444, 28378110628, 110251755656, 429040567732, 1672032067544, 6524678847688, 25490986350416, 99696437839132, 390298689482216
Offset: 0
-
a := n -> binomial(2*n,n) + 4*add(2^(n-k-1)*binomial(2*k,k), k = 0 .. n-1):
seq(a(n), n = 0 .. 25);
# Second program:
a:= proc(n) option remember; `if`(n=0,1,2*a(n-1)+2*binomial(2*n-2, n-1)*(3*n-1)/n) end: seq(a(n), n = 0 .. 25);
# Recurrence:
a := proc(n) option remember; if n < 2 then return [1, 6][n + 1] fi;
((-18*(n - 2)^2 - 42*n + 66)*a(n - 1) + 4*(3*n - 1)*(2*n - 3)*a(n - 2)) / (n*(4 - 3*n)) end: seq(a(n), n = 0..25); # Peter Luschny, Apr 23 2024
A372420
Expansion of (1 + x) / ((1 - 2*x)*sqrt(1 - 4*x)).
Original entry on oeis.org
1, 5, 18, 62, 214, 750, 2676, 9708, 35718, 132926, 499228, 1888644, 7186876, 27478508, 105474216, 406182552, 1568563014, 6071812638, 23552366796, 91525132692, 356242058004, 1388588519268, 5419533876696, 21176597444712, 82834229300124, 324326668721100
Offset: 0
-
a := n -> -2^(n-1)*3*I + binomial(2*n, n)*(1-3/2*hypergeom([1, n+1/2], [n+1], 2)):
seq(simplify(a(n)), n = 0 .. 25);
-
my(x='x+O('x^40)); Vec((1 + x) / ((1 - 2*x)*sqrt(1 - 4*x))) \\ Michel Marcus, Apr 30 2024
A372611
Expansion of (1 + 3*x) / ((1 - 2*x)*sqrt(1 - 4*x)).
Original entry on oeis.org
1, 7, 26, 90, 310, 1082, 3844, 13892, 50950, 189130, 708876, 2677452, 10175356, 38863780, 149045960, 573559240, 2213551430, 8563950250, 33203854460, 128978378620, 501839077460, 1955475615820, 7629823818680, 29805375256120, 116558646378140, 456270710243332
Offset: 0
-
a := n -> -2^(n-1)*5*I + binomial(2*n, n)*(1-5/2*hypergeom([1, n+1/2], [n+1], 2)): seq(simplify(a(n)), n = 0 .. 25);
-
my(x='x+O('x^30)); Vec((1 + 3*x) / ((1 - 2*x)*sqrt(1 - 4*x))) \\ Michel Marcus, May 07 2024
Showing 1-5 of 5 results.
Comments