A029803 Numbers that are palindromic in base 8.
0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 27, 36, 45, 54, 63, 65, 73, 81, 89, 97, 105, 113, 121, 130, 138, 146, 154, 162, 170, 178, 186, 195, 203, 211, 219, 227, 235, 243, 251, 260, 268, 276, 284, 292, 300, 308, 316, 325, 333, 341, 349, 357, 365, 373, 381, 390, 398
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Index entries for sequences that are an additive basis, order 3.
Crossrefs
Programs
-
Mathematica
f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,8], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
-
PARI
ispal(n,b=8)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
-
Python
from itertools import chain, count, islice def A029803_gen(): # generator of terms return chain((0,),chain.from_iterable(chain((int((s:=oct(d)[2:])+s[-2::-1],8) for d in range(8**l,8**(l+1))), (int((s:=oct(d)[2:])+s[::-1],8) for d in range(8**l,8**(l+1)))) for l in count(0))) A029803_list = list(islice(A029803_gen(),20)) # Chai Wah Wu, Jun 23 2022
-
Python
def A029803(n): if n == 1: return 0 y = (x:=1<<(m:=n.bit_length()-2)-m%3)<<3 return (c:=n-x)*x+int(oct(c)[-2:1:-1]or'0',8) if n
Chai Wah Wu, Jun 13 2024
Formula
Sum_{n>=2} 1/a(n) = 3.2188878... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Comments