A029805 Numbers k such that k^2 is palindromic in base 8.
0, 1, 2, 3, 6, 9, 11, 27, 65, 73, 79, 81, 83, 195, 219, 237, 366, 513, 543, 585, 697, 1094, 1539, 1755, 1875, 2910, 4097, 4161, 4225, 4477, 4617, 4681, 4727, 4891, 5267, 8698, 8730, 11841, 12291, 12483, 12675, 13065, 13851, 14673, 15021
Offset: 1
Examples
3 is in the sequence because 3^2 = 9 = 11 in base 8, which is a palindrome. 4 is not in the sequence because 4^2 = 16 = 20 in base 8, which is not a palindrome.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..100
- Patrick De Geest, Palindromic Squares in bases 2 to 17
Crossrefs
Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), this sequence (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).
Programs
-
Mathematica
palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[Range[0, 16000], palQ[#^2, 8] &] (* Harvey P. Dale, May 19 2012 *)
-
Python
from itertools import count, islice def A029805_gen(): # generator of terms return filter(lambda k: (s:=oct(k**2)[2:])[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],count(0)) A029805_list = list(islice(A029805_gen(),20)) # Chai Wah Wu, Jun 23 2022
Comments