cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029847 Gessel-Stanley triangle read by rows: triangle of coefficients of polynomials arising in connection with enumeration of intransitive trees by number of nodes and number of right nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 17, 17, 1, 1, 49, 146, 49, 1, 1, 129, 922, 922, 129, 1, 1, 321, 4887, 11234, 4887, 321, 1, 1, 769, 23151, 106439, 106439, 23151, 769, 1, 1, 1793, 101488, 856031, 1679494, 856031, 101488, 1793, 1, 1, 4097, 420512, 6137832, 21442606, 21442606, 6137832, 420512, 4097, 1
Offset: 0

Views

Author

Keywords

Comments

For precise definition see Knuth (1997).
Named after the American mathematicians Ira Martin Gessel (b. 1951) and Richard Peter Stanley (b. 1944). - Amiram Eldar, Jun 11 2021

Examples

			Triangle begins:
  1;
  .   1;
  .   1,   1;
  .   1,   5,   1;
  .   1,  17,  17,   1;
  .   1,  49, 146,  49,   1;
  .   1, 129, 922, 922, 129, 1;
  .   ...
		

Crossrefs

Row sums give A007889.

Programs

  • Maple
    f:= proc(n,k) option remember; `if`(k<0, 0, `if`(n=0
          and k=0, 1, f(n-1,k-1)+add(add(binomial(n-1, l)
          *s*f(l,s)*f(n-l-1,k-s), s=1..l), l=1..n-1)))
        end:
    seq(seq(f(n, k), k=min(n, 1)..n), n=0..10); # Alois P. Heinz, Sep 24 2019
  • Mathematica
    f[n_, k_] := f[n, k] = If[k<0, 0, If[n==0 && k==0, 1, f[n-1, k-1]+Sum[Sum[ Binomial[n-1, l]*s*f[l, s]*f[n-l-1, k-s], {s, 1, l}], {l, 1, n-1}]]];
    Table[Table[f[n, k], {k, Min[n, 1], n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003