A029847 Gessel-Stanley triangle read by rows: triangle of coefficients of polynomials arising in connection with enumeration of intransitive trees by number of nodes and number of right nodes.
1, 1, 1, 1, 1, 5, 1, 1, 17, 17, 1, 1, 49, 146, 49, 1, 1, 129, 922, 922, 129, 1, 1, 321, 4887, 11234, 4887, 321, 1, 1, 769, 23151, 106439, 106439, 23151, 769, 1, 1, 1793, 101488, 856031, 1679494, 856031, 101488, 1793, 1, 1, 4097, 420512, 6137832, 21442606, 21442606, 6137832, 420512, 4097, 1
Offset: 0
Examples
Triangle begins: 1; . 1; . 1, 1; . 1, 5, 1; . 1, 17, 17, 1; . 1, 49, 146, 49, 1; . 1, 129, 922, 922, 129, 1; . ...
Links
- Alois P. Heinz, Rows n = 0..141, flattened
- Donald E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997. [Annotated scanned copy, with permission]
- Alexander Postnikov, Intransitive Trees, J. Combin. Theory Ser. A, Vol. 79, No. 2 (1997), pp. 360-366.
Crossrefs
Row sums give A007889.
Programs
-
Maple
f:= proc(n,k) option remember; `if`(k<0, 0, `if`(n=0 and k=0, 1, f(n-1,k-1)+add(add(binomial(n-1, l) *s*f(l,s)*f(n-l-1,k-s), s=1..l), l=1..n-1))) end: seq(seq(f(n, k), k=min(n, 1)..n), n=0..10); # Alois P. Heinz, Sep 24 2019
-
Mathematica
f[n_, k_] := f[n, k] = If[k<0, 0, If[n==0 && k==0, 1, f[n-1, k-1]+Sum[Sum[ Binomial[n-1, l]*s*f[l, s]*f[n-l-1, k-s], {s, 1, l}], {l, 1, n-1}]]]; Table[Table[f[n, k], {k, Min[n, 1], n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
Comments