cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029937 Genus of modular curve X_1(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 2, 5, 2, 7, 3, 5, 6, 12, 5, 12, 10, 13, 10, 22, 9, 26, 17, 21, 21, 25, 17, 40, 28, 33, 25, 51, 25, 57, 36, 41, 45, 70, 37, 69, 48, 65, 55, 92, 52, 81, 61, 85, 78, 117, 57, 126, 91, 97
Offset: 1

Views

Author

Keywords

Comments

Also the dimension of the space of cusp forms of weight two on Gamma1(n). [Steven Finch, Apr 03 2009]

References

  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 161.

Crossrefs

Cf. A001617, A029938. [Steven Finch, Apr 03 2009]

Programs

  • Maple
    with(numtheory); A029937 := proc(n) local i,j; j := 1+(1/24)*phi(n)*A001615(n); for i in divisors(n) do j := j-(1/4)*phi(i)*phi(n/i) od; j; end;
  • Mathematica
    a[n_ /; n<5] = 0; a[n_] := 1+Sum[d^2*MoebiusMu[n/d]/24 - EulerPhi[d]*EulerPhi[n/d]/4, {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 13 2014 *)
  • PARI
    A029935(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, f[k,1]),
         h = prod(k=1, fsz, sqr(f[k,1]-1)*f[k,2] + sqr(f[k,1])-1));
      return(h*n\sqr(g));
    };
    a(n) = {
      if (n < 5, return(0));
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, f[k,1]),
         h = prod(k=1, fsz, sqr(f[k,1]) - 1));
      return(1 + sqr(n\g)*h/24 - A029935(n)/4);
    };
    vector(63, n, a(n))  \\ Gheorghe Coserea, Oct 23 2016

Formula

a(n) = 1 + A115000(n) - A029935(n)/4, n > 4. [Kim and Koo, Theorem 1]