cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029940 a(n) = Product_{d|n} phi(d).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 8, 12, 16, 10, 32, 12, 36, 64, 64, 16, 144, 18, 256, 144, 100, 22, 1024, 80, 144, 216, 864, 28, 4096, 30, 1024, 400, 256, 576, 13824, 36, 324, 576, 16384, 40, 20736, 42, 4000, 9216, 484, 46, 131072, 252, 6400, 1024, 6912, 52, 46656, 1600
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(mul(numtheory:-phi(i),i=numtheory:-divisors(n)), n=1..100); # Robert Israel, Nov 21 2014
  • Mathematica
    Table[Product[EulerPhi[i], {i, Divisors[n]}], {n, 100}] (* Carl Najafi, Sep 06 2011 *)
  • PARI
    a(n) = my(d = divisors(n)); prod(k=1, #d, eulerphi(d[k])); \\ Michel Marcus, Nov 21 2014

Formula

If n = Product_{i} p_i^e_i then a(n) = (sqrt(n) * Product_{i} (1 - 1/p_i)^(e_i/(e_i + 1))) ^ d(n), where d(n) is the number of divisors of n (Collis, 2013). - Amiram Eldar, Jun 16 2020
a(n) = Product_{k=1..n} phi(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} phi(n/gcd(n,k))^(1/phi(n/gcd(n,k))). - Richard L. Ollerton, Nov 07 2021

Extensions

More terms from Carl Najafi, Sep 06 2011