A029966 Palindromic in bases 10 and 11.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 232, 343, 454, 565, 676, 787, 898, 909, 26962, 38183, 40504, 49294, 52825, 63936, 75157, 2956592, 2968692, 3262623, 3274723, 3286823, 3298923, 3360633, 3372733, 4348434, 4410144, 4422244, 4581854
Offset: 1
Links
- Ray Chandler and Robert G. Wilson v, Table of n, a(n) for n = 1..79, a(66)-a(76) from Ray Chandler, Oct 31 2014
- P. De Geest, Palindromic numbers beyond base 10
Crossrefs
Programs
-
Magma
[n: n in [0..5000000] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 11) eq Reverse(Intseq(n, 11))]; // Vincenzo Librandi, Nov 23 2014
-
Maple
N:= 11: # to get all terms with up to N decimal digits qpali:= proc(k, b) local L; L:= convert(k, base, b); if L = ListTools:-Reverse(L) then k else NULL fi end proc: digrev:= proc(k,b) local L,n; L:= convert(k,base,b); n:= nops(L); add(L[i]*b^(n-i),i=1..n); end proc: Res:= $0..9: for d from 2 to N do if d::even then m:= d/2; Res:= Res, seq(qpali(n*10^m + digrev(n,10),11), n=10^(m-1)..10^m-1); else m:= (d-1)/2; Res:= Res, seq(seq(qpali(n*10^(m+1)+y*10^m+digrev(n,10),11), y=0..9), n=10^(m-1)..10^m-1); fi od: Res; # Robert Israel, Nov 23 2014
-
Mathematica
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 12], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 30 2004 *) b1=10; b2=11; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *) Select[Range[0, 10^5], PalindromeQ[#] && # == IntegerReverse[#, 11] &] (* Robert Price, Nov 09 2019 *)
Comments