A029970 Numbers that are palindromic in bases 10 and 15.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 828, 858, 888, 919, 949, 979, 1551, 2772, 23632, 25552, 60106, 67576, 465564, 477774, 489984, 515515, 527725, 17577571, 26144162, 28300382, 39399393, 47999974, 69455496, 2118008112, 8050880508
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..72 (first 69 terms from Ray Chandler)
- P. De Geest, Palindromic numbers beyond base 10
Crossrefs
Programs
-
Magma
[n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 15) eq Reverse(Intseq(n, 15))]; // Vincenzo Librandi, Nov 23 2014
-
Mathematica
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 15], AppendTo[l, a]], {n, 200000}]; l (* Robert G. Wilson v, Sep 03 2004 *) b1=10; b2=15; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *) Select[Range[0, 10^5], PalindromeQ[#] && # == IntegerReverse[#, 15] &] (* Robert Price, Nov 09 2019 *)