A029988 Numbers k such that k^2 is palindromic in base 5.
0, 1, 2, 6, 26, 31, 66, 126, 156, 626, 651, 756, 804, 3126, 3276, 3756, 9054, 15626, 15751, 16276, 18434, 18756, 32578, 34162, 46704, 78126, 78876, 81276, 93756, 390626, 391251, 393876, 406276, 468756, 487981, 1166454, 1953126, 1956876
Offset: 1
Links
- Patrick De Geest, Palindromic Squares in bases 2 to 17
- G. J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19. [Annotated scanned copy]
Programs
-
Mathematica
pal5Q[n_]:=Module[{idn5=IntegerDigits[n^2,5]},idn5==Reverse[idn5]]; Select[ Range[ 0,2*10^6],pal5Q] (* Harvey P. Dale, Feb 02 2023 *)