A029992 Numbers k such that k^2 is palindromic in base 7.
0, 1, 2, 4, 8, 10, 11, 20, 32, 40, 50, 57, 64, 80, 160, 200, 344, 400, 500, 550, 557, 730, 1000, 1376, 1432, 1892, 2402, 2451, 2500, 2752, 2801, 3440, 3784, 3902, 5101, 5266, 6880, 8296, 9460, 9608, 9804, 16808, 17200, 19216, 19608, 22693
Offset: 1
Examples
8^2 = 64, which is 121 in base 7, and since that's palindromic, 8 is in the sequence. 9^2 = 81, which is 144 in base 7, but since that's not palindromic, 9 is not in the sequence.
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..237
- Patrick De Geest, Palindromic Squares in bases 2 to 17
Crossrefs
Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), this sequence (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).
Programs
-
Magma
[k:k in [0..23000]| Seqint(Intseq(k^2,7)) eq Seqint(Reverse(Intseq(k^2,7)))]; // Marius A. Burtea, Jan 22 2020
-
Mathematica
Select[Range[0, 16806], IntegerDigits[#^2, 7] == Reverse[IntegerDigits[#^2, 7]] &] (* Alonso del Arte, Jan 21 2020 *)
-
Scala
(0 to 16806).filter(n => Integer.toString(n * n, 7) == Integer.toString(n * n, 7).reverse) // Alonso del Arte, Jan 21 2020