cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030017 a(1) = 1, a(n+1) = Sum_{k = 1..n} p(k)*a(n+1-k), where p(k) is the k-th prime.

Original entry on oeis.org

1, 2, 7, 25, 88, 311, 1095, 3858, 13591, 47881, 168688, 594289, 2093693, 7376120, 25986209, 91549913, 322532092, 1136286727, 4003159847, 14103208628, 49685873471, 175044281583, 616684348614, 2172590743211, 7654078700221, 26965465508072, 94999850216565
Offset: 1

Views

Author

Keywords

Comments

Apply "INVERT" transform to primes.

Examples

			a(5) = 25*2 +7*3 +2*5 + 1*7 = 88.
		

Crossrefs

Row sums of A340991(n-1).
Cf. A000040.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          add(a(n-i)*ithprime(i), i=1..n-1))
        end:
    seq(a(n), n=1..29);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    CoefficientList[ Series[ 1/(1 - Sum[ Prime[ n ]*x^n, {n, 1, 25} ] ), {x, 0, 25} ], x ]
    (* Second program: *)
    a[1] = 1; a[m_] := a[m] = Sum[Prime@ k  a[m - k], {k, m - 1}]; Table[a@ n, {n, 25}] (* Michael De Vlieger, Dec 13 2016 *)

Formula

INVERT: a's from b's in 1+Sum a_i x^i = 1/(1-Sum b_i x^i).
G.f: (1-b(x)/(b(x)-1))*x, where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 13 2016