A340991
Triangle T(n,k) whose k-th column is the k-fold self-convolution of the primes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 2, 0, 3, 4, 0, 5, 12, 8, 0, 7, 29, 36, 16, 0, 11, 58, 114, 96, 32, 0, 13, 111, 291, 376, 240, 64, 0, 17, 188, 669, 1160, 1120, 576, 128, 0, 19, 305, 1386, 3121, 4040, 3120, 1344, 256, 0, 23, 462, 2678, 7532, 12450, 12864, 8288, 3072, 512, 0, 29, 679, 4851, 16754, 34123, 44652, 38416, 21248, 6912, 1024
Offset: 0
Triangle T(n,k) begins:
1;
0, 2;
0, 3, 4;
0, 5, 12, 8;
0, 7, 29, 36, 16;
0, 11, 58, 114, 96, 32;
0, 13, 111, 291, 376, 240, 64;
0, 17, 188, 669, 1160, 1120, 576, 128;
0, 19, 305, 1386, 3121, 4040, 3120, 1344, 256;
0, 23, 462, 2678, 7532, 12450, 12864, 8288, 3072, 512;
...
-
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, ithprime(n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
# Uses function PMatrix from A357368.
PMatrix(10, ithprime); # Peter Luschny, Oct 09 2022
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, Prime[n]], With[{q = Quotient[k, 2]},
Sum[T[j, q] T[n - j, k - q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)
A060801
Invert transform of odd numbers: a(n) = Sum_{k=1..n} (2*k+1)*a(n-k), a(0)=1.
Original entry on oeis.org
1, 3, 14, 64, 292, 1332, 6076, 27716, 126428, 576708, 2630684, 12000004, 54738652, 249693252, 1138988956, 5195558276, 23699813468, 108107950788, 493140127004, 2249484733444, 10261143413212, 46806747599172, 213511451169436
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- Stéphane Ouvry and Alexios P. Polychronakos, Signed area enumeration for lattice walks, Séminaire Lotharingien de Combinatoire (2023) Vol. 87B.
- N. J. A. Sloane, Transforms
- Index entries for linear recurrences with constant coefficients, signature (5,-2).
A300662
Expansion of 1/(1 - x - Sum_{k>=2} prime(k-1)*x^k).
Original entry on oeis.org
1, 1, 3, 8, 22, 59, 160, 429, 1155, 3105, 8354, 22474, 60457, 162636, 437509, 1176941, 3166097, 8517138, 22912002, 61635707, 165806564, 446037175, 1199887133, 3227823181, 8683185454, 23358686444, 62837334885, 169039070970, 454732963567, 1223279724439, 3290751724917
Offset: 0
Cf.
A000040,
A008578,
A023626,
A030011,
A030012,
A030013,
A030014,
A030015,
A030016,
A030017,
A030018,
A292744,
A300632.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=1, 1, ithprime(j-1))*a(n-j), j=1..n))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Mar 10 2018
-
nmax = 30; CoefficientList[Series[1/(1 - x - Sum[Prime[k - 1] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
p[1] = 1; p[n_] := p[n] = Prime[n - 1]; a[n_] := a[n] = Sum[p[k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}]
A382255
Heinz number of the partition corresponding to run lengths in the bits of n.
Original entry on oeis.org
1, 2, 4, 3, 6, 8, 6, 5, 10, 12, 16, 12, 9, 12, 10, 7, 14, 20, 24, 18, 24, 32, 24, 20, 15, 18, 24, 18, 15, 20, 14, 11, 22, 28, 40, 30, 36, 48, 36, 30, 40, 48, 64, 48, 36, 48, 40, 28, 21, 30, 36, 27, 36, 48, 36, 30, 25, 30, 40, 30, 21, 28, 22, 13, 26, 44, 56, 42
Offset: 0
n | binary | partition | a(n) = Heinz number
---+--------+-----------+--------------------
0 | (0) | empty sum | 1 = empty product
1 | 1 | 1 | 2 = prime(1)
2 | 10 | 1+1 | 4 = prime(1) * prime(1)
3 | 11 | 2 | 3 = prime(2)
4 | 100 | 1+2 | 6 = prime(1) * prime(2)
5 | 101 | 1+1+1 | 8 = 2^3 = prime(1) * prime(1) * prime(1)
6 | 110 | 2+1 | 6 = prime(2) * prime(1)
7 | 111 | 3 | 5 = prime(3)
8 | 1000 | 1+3 | 10 = 2*5 = prime(1) * prime(3)
9 | 1001 | 1+2+1 | 12 = 2^2*3 = prime(1) * prime(2) * prime(1)
...| ... | ... | ...
For example, n = 4 = 100[2] (in binary) has run lengths (1, 2), namely: one bit 1 followed by two bits 0. This gives a(4) = prime(1)*prime(2) = 6.
Next, n = 5 = 101[2] (in binary) has run lengths (1, 1, 1): one bit 1, followed by one bit 0, followed by one bit 1. This gives a(4) = prime(1)^3 = 8.
Then, n = 6 = 110[2] (in binary) has run lengths (2, 1): first two bits 1, then one bit 0. This is the same as for 4, just in reverse order, so it yields the same Heinz number a(6) = prime(2)*prime(1) = 6.
Then, n = 7 = 111[2] (in binary) has run lengths (3), namely: three bits 1. This gives a(5) = prime(3) = 5.
Sequence written as irregular triangle:
1;
2;
4, 3;
6, 8, 6, 5;
10, 12, 16, 12, 9, 12, 10, 7;
14, 20, 24, 18, 24, 32, 24, 20, 15, 18, 24, 18, 15, 20, 14, 11;
...
For "constructive" lists of partitions see
A036036 (Abramowitz and Stegun order),
A036036 (reversed),
A080576 (Maple order),
A080577 (Mathematica order).
Row sums of triangle give
A030017(n+1).
Cf.
A101211 (the run lengths as rows of a table).
-
a:= proc(n) option remember; `if`(n<2, 1+n, (p->
a(iquo(n, 2^p))*ithprime(p))(padic[ordp](n+(n mod 2), 2)))
end:
seq(a(n), n=0..100); # Alois P. Heinz, Mar 20 2025
-
Heinz(p)=vecprod([ prime(k) | k <- p ])
RL(v) = if(#v, v=Vec(select(t->t,concat([1,v[^1]-v[^-1],1]),1)); v[^1]-v[^-1])
apply( {A382255(n) = Heinz(RL(binary(n)))}, [0..99] )
A030281
COMPOSE natural numbers with primes.
Original entry on oeis.org
2, 11, 53, 237, 1013, 4196, 16992, 67647, 265743, 1032827, 3979023, 15217248, 57835016, 218636365, 822691425, 3083074193, 11512489353, 42851360088, 159043175322, 588767623587, 2174488780469, 8013945343961, 29477541831841, 108233492257428, 396751988675780
Offset: 1
-
b:= proc(n) option remember; `if`(n=0, [1, 0], (p->
p+[0, p[1]])(add(ithprime(j)*b(n-j), j=1..n)))
end:
a:= n-> b(n)[2]:
seq(a(n), n=1..27); # Alois P. Heinz, Sep 11 2019
-
b[n_] := b[n] = If[n==0, {1, 0}, #+{0, #[[1]]}&[Sum[Prime[j] b[n-j], {j, 1, n}]]];
a[n_] := b[n][[2]];
Array[a, 27] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz *)
A289847
p-INVERT of the primes (A000040), where p(S) = 1 - S - S^2.
Original entry on oeis.org
2, 11, 53, 253, 1205, 5740, 27336, 130200, 620129, 2953634, 14067934, 67004505, 319137367, 1520027050, 7239773429, 34482491204, 164237487721, 782250685197, 3725800625523, 17745705518523, 84521448139914, 402569240665810, 1917406730442806, 9132462688572345
Offset: 0
-
z = 60; s = Sum[Prime[k] x^k, {k, 1, z}]; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000040 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x] , 1](* A289847 *)
A292744
a(0) = 1; a(n) = Sum_{k=1..n} prime(k+1)*a(n-k).
Original entry on oeis.org
1, 3, 14, 64, 294, 1346, 6166, 28242, 129362, 592538, 2714096, 12431808, 56943398, 260826950, 1194707382, 5472309246, 25065693008, 114812401444, 525893599720, 2408834540066, 11033569993066, 50538824799712, 231491059896394, 1060335514811206, 4856824295820082, 22246488881086116
Offset: 0
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Index entries for sequences related to compositions
-
a[0] = 1; a[n_] := a[n] = Sum[Prime[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
nmax = 25; CoefficientList[Series[1/(1 - Sum[Prime[k + 1] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
-
t=26; Vec(1/(1-sum(k=1, t, prime(k+1)*x^k)) + O(x^t)) \\ Felix Fröhlich, Sep 22 2017
A307770
Expansion of e.g.f. 1/(1 - Sum_{k>=1} prime(k)*x^k/k!).
Original entry on oeis.org
1, 2, 11, 89, 957, 12871, 207717, 3910931, 84155053, 2037195551, 54795228241, 1621233039941, 52328310410427, 1829742961027269, 68901415049874055, 2779901582389463177, 119635322278784511015, 5470390958849723994819, 264850557367286330886261, 13535194864326763053170325
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n, j)*ithprime(j)*a(n-j), j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 24 2021
-
nmax = 19; CoefficientList[Series[1/(1 - Sum[Prime[k] x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
A307898
Expansion of 1/(1 - x * Sum_{k>=1} prime(k)*x^k).
Original entry on oeis.org
1, 0, 2, 3, 9, 19, 48, 107, 258, 594, 1405, 3277, 7693, 18004, 42203, 98834, 231592, 542497, 1271003, 2977529, 6975674, 16342011, 38285178, 89691782, 210124363, 492265243, 1153247379, 2701752062, 6329489153, 14828313076, 34738805240, 81383803849, 190660665579, 446667359857, 1046423138962
Offset: 0
-
nmax = 34; CoefficientList[Series[1/(1 - x Sum[Prime[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Prime[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 34}]
A307899
Expansion of 1/(1 + x * Sum_{k>=1} prime(k)*x^k).
Original entry on oeis.org
1, 0, -2, -3, -1, 5, 10, 9, -4, -26, -43, -33, 35, 148, 219, 98, -316, -857, -983, 23, 2296, 4501, 3712, -2906, -14257, -21771, -10811, 28282, 81209, 97292, 7960, -207185, -431595, -386033, 219344, 1322141, 2134126, 1226554, -2443765, -7684081, -9726127, -1791806, 18712361, 41428590, 39753658
Offset: 0
-
nmax = 44; CoefficientList[Series[1/(1 + x Sum[Prime[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = -Sum[Prime[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 44}]
Showing 1-10 of 16 results.
Comments